References
  -  M.C. Samolada, A.A. Zabaniotou, Comparative assessment
    of municipal sewage sludge incineration, gasification and
    pyrolysis for a sustainable sludge-to-energy management in
    Greece, Waste Manage., 34 (2014) 411–420. 
-  C.S. Xu, A.H. Zhong, X.L. Li, C.M. Wang, A. Sahu, H.M. Xu,
    T. Lattimore, K.Q. Zhou, Y.Q. Huang, Laminar burning
    characteristics of upgraded biomass pyrolysis fuel derived
    from rice husk at elevated pressures and temperatures, Fuel,
    210 (2017) 249–261. 
-  M.H. Lopes, P. Abelha , N. Lapa, J.S. Oliveira, I. Cabrita, I.
    Gulyurtlu, The behaviour of ashes and heavy metals during
    the co-combustion of sewage sludges in a fluidised bed, Waste
    Manage., 23 (2003) 859–870. 
-  E.M.M. Ewais, R.M. Elsaadany, A.A. Ahemd, N.H. Shalaby,
    B.E.H. Al-Anadouli, Insulating refractory bricks from water
    treatment sludge and rice husk ash, Refract, Ind. Ceram., 4
    (2017) 1–9. 
-  M. Otero, L.F. Calvo, M.V. Gil, A.I. Garcia, A. Moran,
    Co-combustion of different sewage sludge and coal: a nonisothermal
    thermogravimetric kinetic analysis, Bioresour.
    Technol., 99 (2008) 6311–6319. 
-  H. Siyuan, J.J. Sheng, An innovative method to build a
    comprehensive kinetic model for air injection using TGA/DSC
    experiments, Fuel, 210 (2017) 98–106. 
-  Solid Biomass Fuel Industrial Analysis Method, GB/T 28731-
    2010, PR China. 
-  Industrial Analysis of Coal, GB/T 212-2008, PR China. 
-  Oxygen Bomb Combustion Method, GB/T 213-2008, PR China. 
-  H. Yilmaz, O. Cam, I. Yilmaz, Effect of micro combustor
    geometry on combustion and emission behavior of premixed
    hydrogen/air flames, Energy, 135 (2017) 585–597. 
-  R. Bilbao, J.F. Mastral, M.E. Aldea, J. Ceamanos, M. Betran, J.A.
    Lana, Experimental and theoretical study of the ignition and
    smoldering of wood including convective effects, Combust.
    Flame, 126 (2001) 1363–1372. 
-  H. Zhang, L.L. Zhang, Y.J. Han, Y. Yu, M.A. Xu, X.P. Zhang, L.
    Huang, S.J. Dong, RGO/Au NPs/N-doped CNTs supported on
    nickel foam as an anode for enzymatic biofuel cells, Biosens.
    Bioelectron., 97 (2017) 34–40. 
-  L. Yanfen, X. Ma, Thermogravimetric analysis of the
    co-combustion of coal and paper mill sludge, Appl. Energy, 87
    (2010) 3526–3532. 
-  B.B. Uzun, E. Yaman, Pyrolysis kinetics of walnut shell and
    waste polyolefins using thermogravimetric analysis, J. Energy
    Inst., 90 (2016) 825–837. 
-  T. Damartzis, D. Vamvuka, S. Sfakiltakis, A. Zabaniotou,
    Thermal degradation studies and kinetic modeling of cardoon
    (Cynara cardunculus) pyrolysis using thermogravimetric
    analysis (TGA), Bioresour. Technol., 102 (2011) 6230–6238. 
-  K.M. Lu, W.J. Lee, W.H. Chen, T.C. Lin, Thermogravimetric
    analysis and kinetics of co-pyrolysis of raw/torrefied wood and
    coal blends, Appl. Energy, 105 (2013) 57–65. 
-  H.H. Sait, A. Hussain, A.A. Salema, F.N. Ani, Pyrolysis
    and combustion kinetics of date palm biomass using
    thermogravimetric analysis, Bioresour. Technol., 118 (2012)
    382–389. 
-  S.V. Vassilev, D. Baxter, C.G. Vassileva, An overview of the
    behaviour of biomass during combustion: part I. Phase-mineral
    transformations of organic and inorganic matter, Fuel, 112
    (2013) 391–449. 
-  A.B. Folgueras, R.M. Diaz, J. Xiberta, I. Prieto, Thermogravimetric
    analysis of the co-combustion of coal and sewage sludge, Fuel,
    82 (2003) 2051–2055. 
-  S.J. Li, H.L. Wang, J.M. Yan, Q. Jiang, Oleylamine-stabilized
	  Cu0.9Ni0.1 nanoparticles as efficient catalyst for ammonia
    borane dehydrogenation, Int. J. Hydrogen Energy, 42 (2017)
    25251–25257.