1. S.U.S. Choi, Enhancing Thermal Conductivity of Fluids with Nanoparticles, Proceedings, ASME International Mechanical Engineering Congress and Exposition, ASME, FED 231/MD, San Francisco, CA, USA, 1995, pp. 99–105.
  2. N.A. Yacob, A. Ishak, I. Pop, Falkner-Skan problem for a static or moving wedge in nanofluids, Int. J. Thermal Sci., 50 (2011) 133–139.
  3. V.M. Falkner, S.W. Skan, Some approximate solutions of boundary layer equations, Philos. Mag., 12 (1931) 865–896.
  4. M. Shanmugapriya, M. Chandrasekar, Analytic solution of free and forced convection with suction and injection over a nonisothermal wedge, Bull. Malays. Math. Sci. Soc., 31 (2008) 11–24.
  5. K. Kameswaran, M. Narayana, S. Shaw, P. Sibanda, Heat and mass transfer from an isothermal wedge in nanofluids with Soret effect, Eur. Phys. J. Plus, 129 (2014) 154–164.
  6. F.A. Salama, Effect of radiation on convection heat transfer of Cu-water nanofluid past a moving wedge, Thermal Sci., 20 (2016) 437–447.
  7. X. Xu, S. Chen, Dual solutions of a boundary layer problem for MHD nanofluids through a permeable wedge with variable viscosity, Boundary Value Problems, 2017 (2017) 1–13.
  8. R.M. Kasmani, S. Sivasankaran, M. Bhuvaneswari, A.K. Hussein, Analytical and numerical study on convection of nanofluid past a moving wedge with Soret and Dufour effects, Int. J. Num. Meth. Heat Fluid Flow, 27 (2017) 2333–2354.
  9. A. Bejan, A study of entropy generation in fundamental convective heat transfer, J. Heat Transfer, 101 (1979) 718–725.
  10. A. Bejan, Entropy Generation Minimization, 2nd ed., CRC, Boca Raton, Florida, USA, 1996.
  11. A. Malvandi, D. Ganji, F. Hedayati, M.H. Kaffash, M. Jamshidi, Series solution of entropy generation toward an isothermal flat plate, Thermal Sci., 16 (2012) 1289–1295.
  12. A.S. Butt, A. Ali, Entropy analysis of magnetohydrodynamic flow and heat transfer over a convectively heated radially stretching surface, J. Taiwan Inst. Chem. Eng., 45 (2014) 1197–1203.
  13. A.S. Butt, A. Ali, Entropy analysis of flow and heat transfer caused by a moving plate with thermal radiation, J. Mech. Sci. Technol., 28 (2014) 343–348.
  14. A.S. Butt, S. Munawar, A. Ali, A. Mehmood, Entropy generation in the Blasius flow under thermal radiation, Phys. Scr., 85 (2012) 1–6.
  15. S. Rashidi, N. Abelman, M. Freidooni, Entropy generation in steady MHD flow due to a rotating porous disk in a nanofluid, Int. J. Heat Mass Transfer, 62 (2013) 515–525.
  16. R. Ellahi, M. Hassan, A. Zeeshan, Shape effects of nanosize particles in Cu-H2O nanofluid on entropy generation, Int. J. Heat Mass Transfer, 81 (2015) 449–456.
  17. R.K. Tiwari, M.K. Das, Heat transfer augmentation in a twosided lid-driven differentially heated square cavity utilizing nanofluids, Int. J. Heat Mass Transfer, 50 (2007) 2002–2018.
  18. H. Oztop, E. Abu-Nada, Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids, Int. J. Heat Fluid Flow, 29 (2008) 1326–1336.
  19. M.Q. Brewster, Thermal Radiative Transfer Properties, Wiley, New York, 1972.
  20. D. Pal, G. Mandal, K. Vajravelu, MHD convection-dissipation heat transfer over a non-linear stretching and shrinking sheets in nanofluids with thermal radiation, Int. J. Heat Mass Transfer, 65 (2013) 81–90.
  21. V.S. Arpaci, Radiative entropy production-lost heat into entropy, Int. J. Heat Mass Transfer, 30 (1987) 2115–2123.
  22. L.C. Woods, Thermodynamics of Fluid Systems, Oxford University Press, Oxford, 1975.