References
  -  S.U.S. Choi, Enhancing Thermal Conductivity of Fluids with
    Nanoparticles, Proceedings, ASME International Mechanical
    Engineering Congress and Exposition, ASME, FED 231/MD,
    San Francisco, CA, USA, 1995, pp. 99–105. 
-  N.A. Yacob, A. Ishak, I. Pop, Falkner-Skan problem for a static
    or moving wedge in nanofluids, Int. J. Thermal Sci., 50 (2011)
    133–139. 
-  V.M. Falkner, S.W. Skan, Some approximate solutions of
    boundary layer equations, Philos. Mag., 12 (1931) 865–896. 
-  M. Shanmugapriya, M. Chandrasekar, Analytic solution of free
    and forced convection with suction and injection over a nonisothermal
    wedge, Bull. Malays. Math. Sci. Soc., 31 (2008) 11–24. 
-  K. Kameswaran, M. Narayana, S. Shaw, P. Sibanda, Heat and
    mass transfer from an isothermal wedge in nanofluids with
    Soret effect, Eur. Phys. J. Plus, 129 (2014) 154–164. 
-  F.A. Salama, Effect of radiation on convection heat transfer
    of Cu-water nanofluid past a moving wedge, Thermal Sci., 20
    (2016) 437–447. 
-  X. Xu, S. Chen, Dual solutions of a boundary layer problem for
    MHD nanofluids through a permeable wedge with variable
    viscosity, Boundary Value Problems, 2017 (2017) 1–13. 
-  R.M. Kasmani, S. Sivasankaran, M. Bhuvaneswari, A.K.
    Hussein, Analytical and numerical study on convection of
    nanofluid past a moving wedge with Soret and Dufour effects,
    Int. J. Num. Meth. Heat Fluid Flow, 27 (2017) 2333–2354. 
-  A. Bejan, A study of entropy generation in fundamental
    convective heat transfer, J. Heat Transfer, 101 (1979) 718–725. 
-  A. Bejan, Entropy Generation Minimization, 2nd ed., CRC, Boca
    Raton, Florida, USA, 1996. 
-  A. Malvandi, D. Ganji, F. Hedayati, M.H. Kaffash, M. Jamshidi,
    Series solution of entropy generation toward an isothermal flat
    plate, Thermal Sci., 16 (2012) 1289–1295. 
-  A.S. Butt, A. Ali, Entropy analysis of magnetohydrodynamic flow
    and heat transfer over a convectively heated radially stretching
    surface, J. Taiwan Inst. Chem. Eng., 45 (2014) 1197–1203. 
-  A.S. Butt, A. Ali, Entropy analysis of flow and heat transfer
    caused by a moving plate with thermal radiation, J. Mech. Sci.
    Technol., 28 (2014) 343–348. 
-  A.S. Butt, S. Munawar, A. Ali, A. Mehmood, Entropy generation
    in the Blasius flow under thermal radiation, Phys. Scr., 85 (2012)
    1–6. 
-  S. Rashidi, N. Abelman, M. Freidooni, Entropy generation in
    steady MHD flow due to a rotating porous disk in a nanofluid,
    Int. J. Heat Mass Transfer, 62 (2013) 515–525. 
-  R. Ellahi, M. Hassan, A. Zeeshan, Shape effects of nanosize
	  particles in Cu-H2O nanofluid on entropy generation,
    Int. J. Heat Mass Transfer, 81 (2015) 449–456. 
-  R.K. Tiwari, M.K. Das, Heat transfer augmentation in a twosided
    lid-driven differentially heated square cavity utilizing
    nanofluids, Int. J. Heat Mass Transfer, 50 (2007) 2002–2018. 
-  H. Oztop, E. Abu-Nada, Numerical study of natural convection
    in partially heated rectangular enclosures filled with nanofluids,
    Int. J. Heat Fluid Flow, 29 (2008) 1326–1336. 
-  M.Q. Brewster, Thermal Radiative Transfer Properties, Wiley,
    New York, 1972. 
-  D. Pal, G. Mandal, K. Vajravelu, MHD convection-dissipation
    heat transfer over a non-linear stretching and shrinking sheets
    in nanofluids with thermal radiation, Int. J. Heat Mass Transfer,
    65 (2013) 81–90. 
-  V.S. Arpaci, Radiative entropy production-lost heat into
    entropy, Int. J. Heat Mass Transfer, 30 (1987) 2115–2123. 
-  L.C. Woods, Thermodynamics of Fluid Systems, Oxford
	  University Press, Oxford, 1975.