**References**

- S.U.S. Choi, Enhancing Thermal Conductivity of Fluids with Nanoparticles, Proceedings, ASME International Mechanical Engineering Congress and Exposition, ASME, FED 231/MD, San Francisco, CA, USA, 1995, pp. 99–105.
- N.A. Yacob, A. Ishak, I. Pop, Falkner-Skan problem for a static or moving wedge in nanofluids, Int. J. Thermal Sci., 50 (2011) 133–139.
- V.M. Falkner, S.W. Skan, Some approximate solutions of boundary layer equations, Philos. Mag., 12 (1931) 865–896.
- M. Shanmugapriya, M. Chandrasekar, Analytic solution of free and forced convection with suction and injection over a nonisothermal wedge, Bull. Malays. Math. Sci. Soc., 31 (2008) 11–24.
- K. Kameswaran, M. Narayana, S. Shaw, P. Sibanda, Heat and mass transfer from an isothermal wedge in nanofluids with Soret effect, Eur. Phys. J. Plus, 129 (2014) 154–164.
- F.A. Salama, Effect of radiation on convection heat transfer of Cu-water nanofluid past a moving wedge, Thermal Sci., 20 (2016) 437–447.
- X. Xu, S. Chen, Dual solutions of a boundary layer problem for MHD nanofluids through a permeable wedge with variable viscosity, Boundary Value Problems, 2017 (2017) 1–13.
- R.M. Kasmani, S. Sivasankaran, M. Bhuvaneswari, A.K. Hussein, Analytical and numerical study on convection of nanofluid past a moving wedge with Soret and Dufour effects, Int. J. Num. Meth. Heat Fluid Flow, 27 (2017) 2333–2354.
- A. Bejan, A study of entropy generation in fundamental convective heat transfer, J. Heat Transfer, 101 (1979) 718–725.
- A. Bejan, Entropy Generation Minimization, 2nd ed., CRC, Boca Raton, Florida, USA, 1996.
- A. Malvandi, D. Ganji, F. Hedayati, M.H. Kaffash, M. Jamshidi, Series solution of entropy generation toward an isothermal flat plate, Thermal Sci., 16 (2012) 1289–1295.
- A.S. Butt, A. Ali, Entropy analysis of magnetohydrodynamic flow and heat transfer over a convectively heated radially stretching surface, J. Taiwan Inst. Chem. Eng., 45 (2014) 1197–1203.
- A.S. Butt, A. Ali, Entropy analysis of flow and heat transfer caused by a moving plate with thermal radiation, J. Mech. Sci. Technol., 28 (2014) 343–348.
- A.S. Butt, S. Munawar, A. Ali, A. Mehmood, Entropy generation in the Blasius flow under thermal radiation, Phys. Scr., 85 (2012) 1–6.
- S. Rashidi, N. Abelman, M. Freidooni, Entropy generation in steady MHD flow due to a rotating porous disk in a nanofluid, Int. J. Heat Mass Transfer, 62 (2013) 515–525.
- R. Ellahi, M. Hassan, A. Zeeshan, Shape effects of nanosize
particles in Cu-H
_{2}O nanofluid on entropy generation, Int. J. Heat Mass Transfer, 81 (2015) 449–456. - R.K. Tiwari, M.K. Das, Heat transfer augmentation in a twosided lid-driven differentially heated square cavity utilizing nanofluids, Int. J. Heat Mass Transfer, 50 (2007) 2002–2018.
- H. Oztop, E. Abu-Nada, Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids, Int. J. Heat Fluid Flow, 29 (2008) 1326–1336.
- M.Q. Brewster, Thermal Radiative Transfer Properties, Wiley, New York, 1972.
- D. Pal, G. Mandal, K. Vajravelu, MHD convection-dissipation heat transfer over a non-linear stretching and shrinking sheets in nanofluids with thermal radiation, Int. J. Heat Mass Transfer, 65 (2013) 81–90.
- V.S. Arpaci, Radiative entropy production-lost heat into entropy, Int. J. Heat Mass Transfer, 30 (1987) 2115–2123.
- L.C. Woods, Thermodynamics of Fluid Systems, Oxford University Press, Oxford, 1975.