References

  1. A. Kudo, Y. Miseki, Heterogeneous photocatalyst materials for water splitting, Chem. Soc. Rev., 38 (2009) 253–278.
  2. U.G. Akpan, B.H. Hameed, Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: a review, J. Hazard. Mater., 170 (2009) 520–529.
  3. H.G. Yang, C.H. Sun, S.Z. Qiao, J. Zou, G. Liu, S.C. Smith, H.M. Cheng, G.Q. Lu, Anatase TiO2 single crystals with a large percentage of reactive facets, Nature, 453 (2008) 638–641.
  4. X. Zhang, F. Zhang, K.Y. Chan, Synthesis of titania-silica mixed oxide mesoporous materials, characterization and photocatalytic properties, Appl. Catal., A, 284 (2005) 193–198.
  5. X.B. Chen, S.S. Mao, Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications, Chem. Rev., 107 (2007) 2891–2959.
  6. R. Sasikala, A.R. Shirole, V. Sudarsan, V.S. Kamble, C. Sudakar, R. Naik, R. Rao, S.R. Bharadwaj, Role of support on the photocatalytic activity of titanium oxide, Appl. Catal., A, 390 (2010) 245–252.
  7. H.X. Li, Z.F. Bian, J. Zhu, Y.N. Huo, H. Li, Y.F. Lu, Mesoporous Au/TiO2 nanocomposites with enhanced photocatalytic activity, J. Am. Chem. Soc., 129 (2007) 4538–4539.
  8. J.C. Yu, L.Z. Zhang, Z. Zheng, J.C. Zhao, Synthesis and characterization of phosphated mesoporous titanium dioxide with high photocatalytic activity, Chem. Mater., 15 (2003) 2280–2286.
  9. Y.J. Lin, S. Zhou, X.H. Liu, S. Sheehan, D.W. Wang, TiO2/TiSi2 heterostructures for high-efficiency photoelectrochemical H2O splitting, J. Am. Chem. Soc., 131 (2009) 2772–2773.
  10. S.U.M. Khan, M. Al-Shahry, W.B. Ingler, Efficient photochemical water splitting by a chemically modified n-TiO2, Science, 297 (2002) 2243–2245.
  11. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visiblelight photocatalysis in nitrogen-doped titanium oxides, Science, 293 (2001) 269–271.
  12. T. Ohno, T. Mitsui, M. Matsumura, Photocatalytic activity of S-doped TiO2 photocatalyst under visible light, Chem. Lett., 32 (2003) 364–365.
  13. P. Dhiman, M. Naushad, K.M. Batoo, A. Kumar, G. Sharma, A.A. Ghfar, G. Kumar, M. Singh, Nano FexZn1−xO as a tuneable and efficient photocatalyst for solar powered degradation of bisphenol A from aqueous environment, J. Cleaner Prod., 165 (2017) 1542–1556.
  14. M.I. Litter, Heterogeneous photocatalysis: transition metal ions in photocatalytic systems, Appl. Catal., B, 23 (1999) 89–114.
  15. L.M. Peter, D.J. Riley, E.J. Tull, K.G.U. Wijayantha, Photosensitization of nanocrystalline TiO2 by self-assembled layers of CdS quantum dots, Chem. Commun., 10 (2002) 1030–1031.
  16. C.C. Chen, W.H. Ma, J.C. Zhao, Semiconductor-mediated photodegradation of pollutants under visible-light irradiation, Chem. Soc. Rev., 39 (2010) 4206–4219.
  17. A. Kumar, A. Kumar, G. Sharma, M. Naushad, F.J. Stadler, A.A. Ghfar, P. Dhiman, R.V. Saini, Sustainable nano-hybrids of magnetic biochar supported g-C3N4/FeVO4 for solar powered degradation of noxious pollutants-Synergism of adsorption, photocatalysis and photo-ozonation, J. Cleaner Prod., 165 (2017) 431–451.
  18. A. Kumar, Shalini, G. Sharma, M. Naushad, A. Kumar, S. Kalia, C. Guo, G.T. Mola, Facile hetero-assembly of superparamagnetic Fe3O4/BiVO4 stacked on biochar for solar photo-degradation of methyl paraben and pesticide removal from soil, J. Photochem. Photobiol., A, 337 (2017) 118–131.
  19. K. Awazu, M. Fujimaki, C. Rockstuhl, J. Tominaga, H. Murakami, Y. Ohki, N. Yoshida, T. Watanabe, A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide, J. Am. Chem. Soc., 130 (2008) 1676–1680.
  20. S. Link, M.A. El-Sayed, Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods, J. Phys. Chem. B, 103 (1999) 8410–8426.
  21. T.K. Sau, A.L. Rogach, F. Jackel, T.A. Klar, J. Feldmann, Properties and applications of colloidal nonspherical noble metal nanoparticles, Adv. Mater., 22 (2010) 1805–1825.
  22. X. Chen, H.Y. Zhu, J.C. Zhao, Z.F. Zheng, X.P. Gao, Visiblelight- driven oxidation of organic contaminants in air with gold nanoparticle catalysts on oxide supports, Angew. Chem. Int. Ed., 47 (2008) 5353–5356.
  23. Q. Xiang, J. Yu, B. Cheng, H.C. Ong, Microwave-hydrothermal preparation and visible-light photoactivity of plasmonic photocatalyst Ag-TiO2 nanocomposite hollow spheres, Chem. Asian J., 5 (2010) 1466–1474.
  24. R. Saravanan, S. Agarwal, V.K. Gupta, M.M. Khan, F. Gracia, E. Mosquera, V. Narayanan, A. Stephen, Line defect Ce3+ induced Ag/CeO2/ZnO nanostructure for visible-light photocatalytic activity, J. Photochem. Photobiol., A, 353 (2018) 499–506.
  25. P. Wang, B.B. Huang, X.Y. Qin, X.Y. Zhang, Y. Dai, J.Y. Wei, M.H. Whangbo, Ag@AgCl: a highly efficient and stable photocatalyst active under visible light, Angew. Chem. Int. Ed., 47 (2008) 7931–7933.
  26. P. Wang, B.B. Huang, X.Y. Zhang, X.Y. Qin, Y. Dai, Z.Y. Wang, Z.Z. Lou, Highly efficient visible light plasmonic photocatalysts Ag@Ag(Cl,Br) and Ag@AgCl-AgI, ChemCatChem, 3 (2011) 360–364.
  27. P. Wang, B.B. Huang, Z.Z. Lou, X.Y. Zhang, X.Y. Qin, Y. Dai, Z.K. Zheng, X.N. Wang, Synthesis of highly efficient Ag@AgCl plasmonic photocatalysts with various structures, Chem. Eur. J., 16 (2010) 538–544.
  28. P. Wang, B.B. Huang, Q.Q. Zhang, X.Y. Zhang, X.Y. Qin, Y. Dai, J. Zhan, J.X. Yu, H.X. Liu, Z.Z. Lou, Highly efficient visible light plasmonic photocatalyst Ag@Ag(Br,I), Chem. Eur. J., 16 (2010) 10042–10047.
  29. M.Y. Kang, X.Y. Zhang, L.W. Liu, Q.W. Zhou, M.L. Jin, G.F. Zhou, X.S. Gao, X.B. Lu, Z. Zhang, J.M. Liu, High-density ordered Ag@Al2O3 nanobowl arrays in applications of surfaceenhanced Raman spectroscopy, Nanotechnology, 27 (2016) 165304.
  30. C.H. An, S. Peng, Y.G. Sun, Facile synthesis of sunlight-driven AgCl:Ag plasmonic nanophotocatalyst, Adv. Mater., 22 (2010) 2570–2574.
  31. D.Y. Wu, M.C. Long, Realizing visible-light-induced selfcleaning property of cotton through coating N-TiO2 film and loading AgI particles, ACS Appl. Mater. Interfaces, 3 (2011) 4770–4774.
  32. B. Xue, T. Sun, J.K. Wu, F. Mao, W. Yang, AgI/TiO2 nanocomposites: ultrasound-assisted preparation, visible-light induced photocatalytic degradation of methyl orange and antibacterial activity, Ultrason. Sonochem., 22 (2015) 1–6.
  33. X.L. Miao, X.P. Shen, J.J. Wu, Z.Y. Ji, J.H. Wang, L.R. Kong, M.M. Liu, C.S. Song, Fabrication of an all solid Z-scheme photocatalyst gC3N4/GO/AgBr with enhanced visible light photocatalytic activity, Appl. Catal., A, 539 (2017) 104–113.
  34. D.L. Chen, S.H. Yoo, Q.S. Huang, G. Ali, S.O. Cho, Sonochemical synthesis of Ag/AgCl nanocubes and their efficient visible light-driven photocatalytic performance, Chem. Eur. J., 18 (2012) 5192–5200.
  35. J. Jiang, H. Li, L.Z. Zhang, New insight into daylight photocatalysis of AgI@Ag: synergistic effect between semiconductor photocatalysis and plasmonic photocatalysis, Chem. Eur. J., 18 (2012) 6360–6369.
  36. J. Jiang, L.Z. Zhang, Rapid microwave-assisted nonaqueous synthesis and growth mechanism of AgCl/Ag, and its daylightdriven plasmonic photocatalysis, Chem. Eur. J., 17 (2011) 3710–3717.
  37. H. Wang, X.F. Lang, J. Gao, W. Liu, D. Wu, Y.M. Wu, L. Guo, J.H. Li, Polyhedral AgI microcrystals with an increased percentage of exposed {111} facets as a highly efficient visiblelight photocatalyst, Chem. Eur. J., 18 (2012) 4620–4626.
  38. Z.C. Wang, J.H. Liu, W. Chen, Plasmonic Ag/AgI nanohybrid: synergistic effect of SPR with photographic sensitivity for enhanced photocatalytic activity and stability, Dalton Trans., 41 (2012) 4866–4870.
  39. Q.L. Huang, S.P. Wen, X.S. Zhu, Synthesis and characterization of an AgI/Ag hybrid nanocomposite with surface-enhanced Raman scattering performance and photocatalytic activity, RSC Adv., 4 (2014) 37187–37192.
  40. S. Feng, H. Xu, L. Liu, Y.H. Song, H.M. Li, Y.G. Xu, J.X. Xia, S. Yin, Y. Yan, Controllable synthesis of hexagon-shaped β-AgI nanoplates in reactable ionic liquid and their photocatalytic activity, Colloids Surf., A, 410 (2012) 23–30.
  41. H.L. Lin, Y.J. Zhao, Y.J. Wang, J. Cao, S.F. Chen, Controllable in-situ synthesis of Ag/BiOI and Ag/AgI/BiOI composites with adjustable visible light photocatalytic performances, Mater. Lett., 132 (2014) 141–144.
  42. L. Liang, J. Cao, H.L. Lin, M.Y. Zhang, X.M. Guo, S.F. Chen, A novel double visible light active Z-scheme AgI/Ag/I-(BiO)2CO3 composite: automatic formation of Ag bridge in the photocatalytic process, Mater. Res. Bull., 94 (2017) 291–297.
  43. D.D. Yu, J. Bai, H.O. Liang, J.Z. Wang, C.P. Li, Fabrication of a novel visible-light-driven photocatalyst Ag-AgI-TiO2 nanoparticles supported on carbon nanofibers, Appl. Surf. Sci., 349 (2015) 241–250.
  44. Y.P. Bi, S.X. Ouyang, J.Y. Cao, J.H. Ye, Facile synthesis of rhombic dodecahedral AgX/Ag3PO4 (X = Cl, Br, I) heterocrystals with enhanced photocatalytic properties and stabilities, Phys. Chem. Chem. Phys., 13 (2011) 10071–10075.
  45. H.F. Cheng, B.B. Huang, Y. Dai, X.Y. Qin, X.Y. Zhang, Onestep synthesis of the nanostructured AgI/BiOI composites with highly enhanced visible-light photocatalytic performances, Langmuir, 26 (2010) 6618–6624.
  46. Z.B. Xiang, Y. Wang, P. Ju, Y. Long, D. Zhang, Facile fabrication of AgI/BiVO4 composites with enhanced visible photocatalytic degradation and antibacterial ability, J. Alloys Compd., 721 (2017) 622–627.
  47. S.K. Li, F.Z. Huang, Y. Wang, Y.H. Shen, L.G. Qiu, A.J. Xie, S.J. Xu, Magnetic Fe3O4@C@Cu2O composites with bean-like core/shell nanostructures: synthesis, properties and application in recyclable photocatalytic degradation of dye pollutants, J. Mater. Chem., 21 (2011) 7459–7466.
  48. X. Xu, X.P. Shen, G.X. Zhu, L.Q. Jing, X.S. Liu, K.M. Chen, Magnetically recoverable Bi2WO6-Fe3O4 composite photocatalysts: fabrication and photocatalytic activity, Chem. Eng. J., 200–202 (2012) 521–531.
  49. K. Yu, S.G. Yang, H. He, C. Sun, C.G. Gu, Y.M. Ju, Visible light-driven photocatalytic degradation of rhodamine B over NaBiO3: pathways and mechanism, J. Phys. Chem. A, 113 (2009) 10024–10032.
  50. Z. He, C. Sun, S.G. Yang, Y.C. Ding, H. He, Z.L. Wang, Photocatalytic degradation of rhodamine B by Bi2WO6 with electron accepting agent under microwave irradiation: mechanism and pathway, J. Hazard. Mater., 162 (2009) 1477–1486.
  51. C.C. Chen, X.Z. Li, W.H. Ma, J.C. Zhao, H. Hidaka, N. Serpone, Effect of transition metal ions on the TiO2-assisted photodegradation of dyes under visible irradiation: a probe for the interfacial electron transfer process and reaction mechanism, J. Phys. Chem. B, 106 (2002) 318–324.
  52. M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis, Chem. Rev., 95 (1995) 69–96.
  53. S.S. Soni, M.J. Henderson, J.F. Bardeau, A. Gibaud, Visible-light photocatalysis in titania-based mesoporous thin films, Adv. Mater., 20 (2008) 1493–1498.
  54. J.F. Guo, B. Ma, A. Yin, K.N. Fan, W.L. Dai, Photodegradation of rhodamine B and 4-chlorophenol using plasmonic photocatalyst of Ag-AgI/Fe3O4@SiO2 magnetic nanoparticle under visible light irradiation, Appl. Catal., B, 101 (2011) 580–586.
  55. L. Han, P. Wang, C.Z. Zhu, Y.M. Zhai, S.J. Dong, Facile solvothermal synthesis of cube-like Ag@AgCl: a highly efficient visible light photocatalyst, Nanoscale, 3 (2011) 2931–2935.
  56. W.Q. Cui, H. Wang, Y.H. Liang, L. Liu, B.X. Han, Preparation of Ag@AgI-intercalated K4Nb6O17 composite and enhanced photocatalytic degradation of Rhodamine B under visible light, Catal. Commun., 36 (2013) 71–74.
  57. Y. Liang, H. Wang, L. Liu, P. Wu, W. Cui, J.G. McEvoy, Z. Zhang, Microwave-assisted synthesis of a superfine Ag/ AgI photocatalyst with high activity and excellent durability, J. Mater. Sci., 50 (2015) 6935–6946.
  58. Z. Zhao, L. Zhu, J. Fan, Ag@AgX (X = Cl, Br, I) modified N,F codoped TiO2 nanotubes as effective photocatalyst, Mater. Technol., 29 (2014) A3–A8.
  59. L.L. Sun, W. Wu, Q.Y. Tian, M. Lei, J. Liu, X.H. Xiao, X.D. Zheng, F. Ren, C.Z. Jiang, In situ oxidation and self-assembly synthesis of dumbbell-like α-Fe2O3/Ag/AgX (X = Cl, Br, I) heterostructures with enhanced photocatalytic properties, ACS Sustain. Chem. Eng., 4 (2016) 1521–1530.