References

  1. Y. Ordaz-Guillén, C.J. Galíndez-Mayer, N. Ruiz-Ordaz, C. Juárez-Ramírez, F. Santoyo-Tepole, O. Ramos-Monray, Evaluating the degradation of the herbicides picloram and 2,4-D in a compartmentalized reactive biobarrier with internal liquid recirculation, Environ. Sci. Pollut. Res., 21 (2014) 8765–8773.
  2. US EPA, Registration Eligibility Decision for 2,4-D webpage on EPA, Available at: https://archive.epa.gov/pesticides/reregistration/web/pdf/24d_red.pdf, 2005.
  3. F.L. Souza, C. Saéz, M.R.V. Lanza, P. Canizares, M.A. Rodrigo, Removal of pesticide 2,4-D by conductive-diamond photoelectrochemical oxidation, Appl. Catal., B., 149 (2015) 24–30.
  4. Official Gazette, Turkish Regulation on Human Consumption Water, Part Four, Appendix-1, Chemical Parameters (25730), 17.02.2005, 19.
  5. National Pesticide Information Center, “2,4-D Technical Fact Sheet” webpage on EPA, Available at: http://npic.orst.edu/factsheets/archive/2,4-DTech.html#reg, 2016.
  6. WHO, The WHO Recommended Classification of Pesticides by Hazard and Guidelines to Classification, World Health Organization, Ginebra, 2004.
  7. M.A. Vishnuganth, R. Neelancherry, M. Kumar, N. Selvaraju, Carbofuran removal in continuous-photocatalytic reactor: reactor optimization, rate-constant determination and carbofuran degradation pathway analysis, J. Environ. Sci. Health, Part B, 52 (2017) 353–360.
  8. N.L. Finčur, J.B. Krstić, F.S. Šibul, D.V. Šojić, V.N. Despotović, N.D. Banić, J.R. Agbaba, B.F. Abramović, Removal of alprazolam from aqueous solutions by heterogeneous photocatalysis: influencing factors, intermediates, and products, Chem. Eng. J., 307 (2017) 1105–1115.
  9. T.J. Kaur, A.P. Toor, R. Wanchoo, UV-assisted degradation of propiconazole in a TiO2 aqueous suspension: identification of transformation products and the reaction pathway using GC/ MS, Int. J. Environ. Anal. Chem., 95 (2015) 494–507.
  10. M. Qamar, M. Muneer, Comparative photocatalytic study of two selected pesticide derivatives, indole-3-acetic acid and indole-3-butyric acid in aqueous suspensions of titanium dioxide, J. Hazard. Mater., 120 (2005) 219–227.
  11. M. Yeber, E. Paul, C. Soto, Chemical and biological treatments to clean oily wastewater: optimization of the photocatalytic process using experimental design, Desal. Wat. Treat., 47 (2012) 295–299.
  12. M.N. Chong, Y.J. Cho, P.E. Poh, B. Jin, Evaluation of titanium dioxide photocatalytic technology for the treatment of reactive Black 5 dye in synthetic and real greywater effluents, J. Cleaner Prod., 89 (2015) 196–202.
  13. E.C. Catalkaya, F. Kargi, Dehalogenation, degradation and mineralization of diuron by peroxone (peroxide/ozone) treatment, J. Environ. Sci. Health, Part A, 44 (2009) 630–638.
  14. P. Singh, A. Dhir, V.K. Sangal, Optimization of photocatalytic process parameters for the degradation of acrylonitrile using Box–Behnken design, Desal. Wat. Treat., 55 (2015) 1501–1508.
  15. P.S. Thind, D. Kumari, S. John, TiO2/H2O2 mediated UV photocatalysis of Chlorpyrifos: optimization of process parameters using response surface methodology, JECE, 6 (2018) 3602–3609.
  16. M.N. Chong, B. Jin, C.W.K. Chow, C. Saint, Recent developments in photocatalytic water treatment technology: a review, Water Res., 44 (2010) 2997–3027.
  17. J. Zhang, D. Fu, Y. Xu, C. Liu, Optimization of parameters on photocatalytic degradation of chloramphenicol using TiO2 as photocatalyst by response surface methodology, JES, 22 (2010) 1281–1289.
  18. J. Burbano, I. Cruz, J. Colina-Márquez, A. López-Vásquez, F. Machuca, Evaluation of zinc oxide-based photocatalytic degradation of a commercial pesticide, J. Adv. Oxid. Technol., 11 (2008) 49–55.
  19. S. Rashidi, M. Nikazar, A.V. Yazdi, R. Fazaeli, Optimized photocatalytic degradation of Reactive Blue 2 by TiO2/UV process, J. Environ. Sci. Health, Part A, 49 (2014) 452–462.
  20. N. Chaibakhsh, N. Ahmadi, M.A. Zanjanch, Optimization of photocatalytic degradation of neutral red dye using TiO2 nanocatalyst via Box–Behnken design, Desal. Wat. Treat., 57 (2016) 9296–9306.
  21. A. Suárez-Escobar, A. Pataquiva-Mateus, A. López-Vasquez, Electrocoagulation-photocatalytic process for the treatment of lithographic wastewater. Optimization using response surface methodology (RSM) and kinetic study, Catal. Today, 266 (2016) 120–125.
  22. A. Carabin, P. Drogui, D. Robert, Photocatalytic oxidation of carbamazepine: application of an experimental design methodology, Water Air Soil Pollut., 227 (2016) 122.
  23. S.V. Sastry, M.A. Khan, Aqueous based polymeric dispersion: Plackett–Burman design for screening of formulation variables of atenolol gastrointestinal therapeutic system, Pharm. Acta Helv., 73 (1998) 105–112.
  24. E. Hamed, A. Sakr, Application of multiple response optimization technique to extended release formulations design, J. Controlled Release, 73 (2001) 329–338.
  25. G.E.P. Box, W.G. Hunter, J.S. Hunter, Statics for Experiments: An Introduction to Design Data Analysis and Model Building, Wiley, New York, 1978.
  26. R.H. Myers, D.C. Montgomery, C.M. Anderson-Cook, Response Surface Methodology: Process and Product Optimization Using Designed Experiments, 3rd ed., John Wiley & Sons, Inc., New York 2009.
  27. A. López-Vásquez, J.A. Colina-Márquez, F. Machuca-Martínez, Multivariable analysis of 2,4-d herbicide photocatalytic degradation, Dyna, 78 (2011) 119–125.
  28. A.V. Schenone, L.O. Conte, M.A. Botta, O.M. Alfano, Modeling and optimization of photo-Fenton degradation of 2,4-D using ferrioxalate complex and response surface methodology (RSM), J. Environ. Manage., 155 (2015) 177–183.
  29. I.H. Cho, K.D. Zoh, Photocatalytic degradation of azo dye (Reactive Red 120) in TiO2/UV system: optimization and modeling using a response surface methodology (RSM) based on the central composite design, Dyes Pigm., 75 (2007) 533–543.
  30. M.B. Kasiri, H. Aleboyeh, A. Aleboyeh, Modeling and optimization of heterogeneous photo-Fenton process with response surface methodology and artificial neural networks, Environ. Sci. Technol., 42 (2008) 7970–7975.
  31. D. Baş, İ.H. Boyacı, Modeling and optimization I: usability of response surface methodology, J. Food Eng., 78 (2007) 836–845.
  32. R. Larson, B. Farber, Elementary Statistics-picturing the World, Pearson Education Asia Limited and Tsinghua University Press, Beijing, China, 2003.
  33. J.M. Utts, R.F. Heckard, Mind on Statistics, Thamson Learning Asia and China Machine Press, Beijing, China, 2002.
  34. A.M. Joglekar, A.T. May, Product excellence through design of experiments, Cereal Food World, 32 (1987) 857–868.
  35. H. Zúňiga-Benitez, C. Aristizábal-Ciro, G.A. Peñuela, Heterogeneous photocatalytic degradation of the endocrinedisturbing chemical Benzophenone-3: parameters optimization and by-products identification, J. Environ. Manage., 167 (2016) 246–258.
  36. B. Pare, D. Swami, P. More, T. Qureshi, T.R. Thapak, Mineralization of methyene violet dye using titanium dioxide in presence of visible light, Int. J. Chem. Sci., 9 (2011) 1685–1697.