References

  1. G.Z. Kyzas, Green Adsorbents. Bentham Science Publishers, United Arab Emirates, 2015.
  2. G.Z. Kyzas, Coffee Wastes as Adsorbents, C.N. Foster, Ed., Agricultural Wastes: Characteristics, Types and Management, Noc, New York, USA, 2015, pp. 215–229.
  3. J.R. Perrich, Activated Carbon Adsorption for Wastewater Treatment, CRC Press, Boca Raton, FL, 1981.
  4. J.S. Mattson, H.B. Mark, Activated Carbon: Surface Chemistry and Adsorption from Solution, Marcel Dekker, New York, 1971.
  5. R.C. Bansal, M. Goyal, Activated Carbon Adsorption. CRC Press, Taylor & Francis, Boca Raton, FL, USA, 2005.
  6. R. Mailler, J. Gasperi, Y. Coquet, S. Deshayes, S. Zedek, C. Cren- Olivé, N. Cartiser, V. Eudes, A. Bressy, E. Caupos, R. Moilleron, G. Chebbo, V. Rocher, Study of a large scale powdered activated carbon pilot: removals of a wide range of emerging and priority micropollutants from wastewater treatment plant effluents, Water Res., 72 (2015) 315–330.
  7. I. Anastopoulos, G.Z. Kyzas, Agricultural peels for dye adsorption: a review of recent literature, J. Mol. Liq., 200 (2014) 381–389.
  8. I. Anastopoulos, G.Z. Kyzas, Progress in batch biosorption of heavy metals onto algae, J. Mol. Liq., 209 (2015) 77–86.
  9. I. Anastopoulos, G.Z. Kyzas, Composts as biosorbents for decontamination of various pollutants: a review, Water Air Soil Pollut., 226 (2015) 61.
  10. E.A. Deliyanni, G.Z. Kyzas, K.S. Triantafyllidis, K.A. Matis, Activated carbons for the removal of heavy metal ions: a systematic review of recent literature focused on lead and arsenic ions, Open Chem., 13 (2015) 699–708.
  11. G.Z. Kyzas, A decolorization technique with spent “greek coffee” grounds as zero-cost adsorbents for industrial textile wastewaters, Materials, 5 (2012) 2069–2087.
  12. G.Z. Kyzas, Commercial coffee wastes as materials for adsorption of heavy metals from aqueous solutions, Materials, 5 (2012) 1826–1840.
  13. G.Z. Kyzas, E.A. Deliyanni, Modified activated carbons from potato peels as green environmental-friendly adsorbents for the treatment of pharmaceutical effluents, Chem. Eng. Res. Des., 97 (2015) 135–144.
  14. G.Z. Kyzas, E.A. Deliyanni, N.K. Lazaridis, Magnetic modification of microporous carbon for dye adsorption, J. Colloid Interface Sci., 430 (2014) 166–173.
  15. G.Z. Kyzas, E.A. Deliyanni, K.A. Matis, Activated carbons produced by pyrolysis of waste potato peels: cobalt ions removal by adsorption, Colloid Surf. A., 490 (2016) 74–83.
  16. I. Anastopoulos, M. Karamesouti, A.C. Mitropoulos, G.Z. Kyzas, A review for coffee adsorbents, J. Mol. Liq., 229 (2017) 555–565.
  17. M.M. Koutlemani, P.Mavros, A.I. Zouboulis, K.A. Matis, Recovery of Co2+ ions from aqueous solutions by froth flotation, Sep. Sci. Technol., 29 (1994) 867–886.
  18. N. Barrak, R. Mannai, M. Zaidi, S. Achour, M. Kechida, A.N. Helal, Optimization of novacron blue 4R (NB4R) removal by adsorption process on activated carbon using response surface methodology, Desal. Wat. Treat., 104 (2018) 346–353.
  19. L. Daddi Oubekka, N.E. Djelali, V. Chaleix, V. Gloaguen, Removal of lead (II) and cadmium (II) from aqueous solutions by adsorption on date pits modified by DTPAD, Desal. Wat. Treat., 98 (2017) 233–243.
  20. W. Liu, J. Zhang, N. Li, Q. Ping, Adsorption of heavy metal ions with modified diatomite from effluent, Desal. Wat. Treat., 103 (2018) 216–220.
  21. F. Medjdoub, K. Louhab, A. Hamouche, Comparative study of the adsorption of paracetamol from aqueous solution on olive stones and date pits, Desal. Wat. Treat., 104 (2018) 225–233.
  22. A.A. Peláez Cid, A.M.H. González, M.S. Villanueva, Adsorption of heavy metals on activated carbons and their respective lignocellulosic precursors: experimental and theoretical approach, Desal. Wat. Treat., 104 (2018) 169–174.
  23. Y. Rong, H. Li, L. Xiao, Q. Wang, Y. Hu, S. Zhang, R. Han, Adsorption of malachite green dye from solution by magnetic activated carbon in batch mode, Desal. Wat. Treat., 106 (2018) 273–284.
  24. Z. Roostan, A. Rashidi, S.M. Borghei, Nickel ion removal from aqueous solution using recyclable zeolitic imidazolate framework-8 (ZIF-8) nano adsorbent: a kinetic and equilibrium study, Desal. Wat. Treat., 103 (2018) 141–151.
  25. T. Satapanajaru, C. Chokejaroenrat, P. Pengthamkeerati, Removal of reactive black 5 and its degradation using combined treatment of nano-zero valent iron activated persulfate and adsorption processes, Desal. Wat. Treat., 102 (2018) 300–311.
  26. F. Xiao, J. Cheng, X. Fan, C. Yang, Y. Hu, Adsorptive removal of the hazardous anionic dye congo red and mechanistic study of ZIF-8, Desal. Wat. Treat., 101 (2018) 291–300.
  27. X. Zhang, M. Qiao, Z. Zhang, R. Song, Z. Li, H. Li, Removal of Zn(II) from aqueous solutions by adsorption using different types of waste bricks, Desal. Wat. Treat., 106 (2018) 177–190.
  28. M.A. Zulfikar, Mustapa, M.B. Amran, A. Alni, D. Wahyuningrum, Adsorption of cationic dye from aqueous solution using molecularly imprinted polymers (MIPs). Desal. Wat. Treat., 103 (2018) 102–112.
  29. R. Ahmad, I. Hasan, A. Mittal, Adsorption of Cr(VI) and Cd(II) on chitosan grafted polyaniline-ommt nanocomposite: isotherms, kinetics and thermodynamics studies, Desal. Wat. Treat., 58 (2017) 144–153.
  30. A.H. Jawad, N.F.H. Mamat, M.F. Abdullah, K. Ismail, Adsorption of methylene blue onto acid-treated mango peels: kinetic, equilibrium and thermodynamic study, Desal. Wat. Treat., 59 (2017) 210–219.
  31. P. Vairavel, V. Ramachandra Murty, S. Nethaji, Removal of congo red dye from aqueous solutions by adsorption onto a dual adsorbent (neurospora crassa dead biomass and wheat bran): optimization, isotherm, and kinetics studies, Desal. Wat. Treat., 68 (2017) 274–292.
  32. L. Wu, Z. Qin, F. Yu, J. Ma, Graphene oxide cross-linked chitosan nanocomposite adsorbents for the removal of Cr(VI) from aqueous environments, Desal. Wat. Treat., 72 (2017) 300–307.
  33. M.J. Angove, B.B. Johnson, J.D. Wells, The influence of temperature on the adsorption of cadmium(II) and cobalt(II) on kaolinite, J. Colloid Interface Sci., 204 (1998) 93–103.
  34. E.H. Borai, M.M.E. Breky, M.S. Sayed, M.M. Abo-Aly, Synthesis, characterization and application of titanium oxide nanocomposites for removal of radioactive cesium, cobalt and europium ions, J. Colloid Interface Sci., 450 (2015) 17–25.
  35. J.D. Wells, B.B. Johnson, The influence of temperature on the adsorption of cadmium(II) and cobalt(II) on goethite. J. Colloid Interface Sci., 211 (1999) 281–290.
  36. A.H. Sulaymon, B.A. Abid, J.A. Al-Najar, Removal of lead copper chromium and cobalt ions onto granular activated carbon in batch and fixed-bed adsorbers, Chem. Eng. J., 155 (2009) 647–653.
  37. K.A. Krishnan, T.S. Anirudhan, Kinetic and equilibrium modelling of cobalt(II) adsorption onto bagasse pith based sulphurised activated carbon, Chem. Eng. J., 137 (2008) 257–264.
  38. M. Abbas, S. Kaddour, M. Trari, Kinetic and equilibrium studies of cobalt adsorption on apricot stone activated carbon, J. Ind. Eng. Chem., 20 (2014) 745–751.
  39. B. Boulinguiez, P. Le Cloirec, Adsorption/desorption of tetrahydrothiophene from natural gas onto granular and fibercloth activated carbon for fuel cell applications, Energy Fuels, 23 (2009) 912–919.
  40. C. Lastoskie, K.E. Gubbins, N. Quirke, Pore size distribution analysis of microporous carbons: a density functional theory approach, J. Phys. Chem., 97 (1993) 4786–4796.
  41. P.I. Ravikovitch, S.C.O. Domhnaill, A.V. Neimark, F. Schueth, K.K. Unger, Capillary hysteresis in nanopores: theoretical and experimental studies of nitrogen adsorption on mcm-41, Langmuir, 11 (1995) 4765–4772.
  42. L.H. Cohan, Sorption hysteresis and the vapor pressure of concave surfaces, J. Am. Chem. Soc., 60 (1938) 433–435.
  43. S. Brunauer, P.H. Emmett, E. Teller, Adsorption of gases in multi-molecular layers, J. Am. Chem. Soc., 60 (1938) 309–319.
  44. E.P. Barrett, L.G. Joyner, P.P. Halenda, The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms, J. Am. Chem. Soc., 73 (1951) 373–380.
  45. M. Sevilla, A.B. Fuertes, The production of carbon materials by hydrothermal carbonization of cellulose, Carbon, 47 (2009) 2281–2289.
  46. A.M. Donia, A.A. Atia, K.Z. Elwakeel, Selective separation of mercury(II) using magnetic chitosan resin modified with schiff’s base derived from thiourea and glutaraldehyde, J. Hazard. Mater., 151 (2008) 372–379.
  47. I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc., 40 (1918) 1361–1403.
  48. H. Freundlich, Over the adsorption in solution. Z. Phys. Chem., 57 (1906) 385–470.
  49. M.M. Dubinin, L.V. Radushkevich, Equation of the characteristic curve of activated charcoal, Proc. Acad. Sci. USSR, 55 (1947) 331–333.
  50. S. Lagergren, About the theory of so-called adsorption of soluble substances, Handlingar, 24 (1898) 1–39.
  51. Y.S. Ho, J.C.Y. Ng, G. McKay, Kinetics of pollutant sorption by biosorbents: review, Sep. Purif. Methods, 29 (2000) 189–232.
  52. S. Azizian, Kinetic models of sorption: a theoretical analysis, J. Colloid Interface Sci., 276 (2004) 47–52.
  53. M. Sevilla, A.B. Fuertes, Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides, Chem. Eur. J., 15 (2009) 4195–4203.
  54. X. Liang, M. Zeng, C. Qi, One-step synthesis of carbon functionalized with sulfonic acid groups using hydrothermal carbonization, Carbon, 48 (2010) 1844–1848.
  55. S. Zhao, X.-Y. Li, C.-Y. Wang, M.-M. Chen, Preparation of bowllike and eggshell-like hollow carbon microspheres from potato starch, Mater. Lett., 70 (2012) 54–56.
  56. G.K. Parshetti, S. Kent Hoekman, R. Balasubramanian, Chemical, structural and combustion characteristics of carbonaceous products obtained by hydrothermal carbonization of palm empty fruit bunches, Bioresour. Technol., 135 (2013) 683–689.
  57. L. Yu, C. Falco, J. Weber, R.J. White, J.Y. Howe, M.-M. Titirici, Carbohydrate-derived hydrothermal carbons: a thorough characterization study, Langmuir, 28 (2012) 12373–12383.
  58. M.-M. Titirici, M. Antonietti, Chemistry and materials options of sustainable carbon materials made by hydrothermal carbonization, Chem. Soc. Rev., 39 (2010) 103–116.
  59. L. Zhang, W. Xie, X. Zhao, Y. Liu, W. Gao, Study on the morphology, crystalline structure and thermal properties of yellow ginger starch acetates with different degrees of substitution, Thermochim. Acta, 495 (2009) 57–62.
  60. M. Sevilla, J.A. Maciá-Agulló, A.B. Fuertes, Hydrothermal carbonization of biomass as a route for the sequestration of CO2: chemical and structural properties of the carbonized products, Biomass Bioenergy, 35 (2011) 3152–3159.
  61. X. Sun, Y. Li, Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles, Angew. Chem. Int. Ed., 43 (2004) 597–601.
  62. H.R. Holgate, J.C. Meyer, J.W. Tester, Glucose hydrolysis and oxidation in supercritical water. AIChE J., 41 (1995) 637–648.
  63. A.C. Lua, T. Yang, Effect of activation temperature on the textural and chemical properties of potassium hydroxide activated carbon prepared from pistachio-nut shell, J. Colloid Interface Sci., 274 (2004) 594–601.
  64. B.M. Kabyemela, T. Adschiri, R.M. Malaluan, K. Arai, Glucose and fructose decomposition in subcritical and supercritical water: detailed reaction pathway, mechanisms, and kinetics, Ind. Eng. Chem. Res., 38 (1999) 2888–2895.
  65. J. Rouquerol, D. Avnir, C.W. Fairbridge, D.H. Everett, J.M. Haynes, N. Pernicone, J.D.F. Ramsay, K.S.W. Sing, K.K. Unger, Recommendations for the characterization of porous solids (technical report), Pure Appl. Chem., 66 (1994) 1739–1758.
  66. M. Chen, D. Yan, X. Zhang, Z. Yu, G. Zhu, Y. Zhao, S. Lu, G. Chen, H. Xu, A. Yu, Activated carbons by a hydrothermalassisted activated method for li-ion batteries, Mater. Lett., 196 (2017) 276–279.
  67. W. Yuan, A. Xie, S. Li, F. Huang, P. Zhang, Y. Shen, High-activity oxygen reduction catalyst based on low-cost bagasse, nitrogen and large specific surface area, Energy, 115 (2016) 397–403.
  68. F. Suárez-Garcı́a, A. Martı́nez-Alonso, J.M.D. Tascón, Pyrolysis of apple pulp: chemical activation with phosphoric acid, J. Anal. Appl. Pyrolysis, 63 (2002) 283–301.
  69. F. Suárez-García, S. Villar-Rodil, C.G. Blanco, A. Martínez-Alonso, J.M.D. Tascón, Effect of phosphoric acid on chemical transformations during nomex pyrolysis, Chem. Mater., 16 (2004) 2639–2647.
  70. M. Myglovets, O.I. Poddubnaya, O. Sevastyanova, M.E. Lindström, B. Gawdzik, M. Sobiesiak, M.M. Tsyba, V.I. Sapsay, D.O. Klymchuk, A.M. Puziy, Preparation of carbon adsorbents from lignosulfonate by phosphoric acid activation for the adsorption of metal ions, Carbon, 80 (2014) 771–783.
  71. Z. Chen, L. Ma, S. Li, J. Geng, Q. Song, J. Liu, C. Wang, H. Wang, J. Li, Z. Qin, S. Li, Simple approach to carboxyl-rich materials through low-temperature heat treatment of hydrothermal carbon in air, Appl. Surf. Sci., 257 (2011) 8686–8691.
  72. S. Román, J.M. Valente Nabais, B. Ledesma, J.F. González, C. Laginhas, M.M. Titirici, Production of low-cost adsorbents with tunable surface chemistry by conjunction of hydrothermal carbonization and activation processes, Micropor. Mesopor. Mater., 165 (2013) 127–133.
  73. M. Sánchez-Polo, J. Rivera-Utrilla, Adsorbent-adsorbate interactions in the adsorption of Cd(II) and Hg(II) on ozonized activated carbons, Environ. Sci. Technol., 36 (2002) 3850–3854.