1. D. Wang, G. Alfthan, A. Aro, P. Lahermo, P. Väänänen, The impact of selenium fertilisation on the distribution of selenium in rivers in Finland, Agric. Ecosyst. Environ., 50 (1994) 133–149.
  2. J. Risher, Toxicological profile for selenium, ATSDR, 2003.
  3. J. HÖGberg, J.A.N. Alexander, In: M.S. Toprak, H.L. Karlsson, and B. Fadeel, Handbook on the Toxicology of Metals, 3rd ed., Academic Press, Burlington 2014, pp. 783–807.
  4. P. Zhang, D.L. Sparks, Kinetics of selenate and selenite adsorption/ desorption at the goethite/water interface, Environ. Sci. Technol., 24 (1990) 1848–1856.
  5. B. Alley, A. Beebe, J. Rodgers, J.W. Castle, Chemical and physical characterization of produced waters from conventional and unconventional fossil fuel resources, Chemosphere, 85 (2011) 74–82.
  6. M.P. De Souza, I.J. Pickering, M. Walla, N. Terry, Selenium assimilation and volatilization from selenocyanate-treated Indian mustard and muskgrass, Plant Physiol., 128 (2002) 625– 633.
  7. N. Aman, T. Mishra, J. Hait, R. Jana, Simultaneous photoreductive removal of copper (II) and selenium (IV) under visible light over spherical binary oxide photocatalyst, J. Hazard. Mater., 186 (2011) 360–366.
  8. N. Bleiman, Y.G. Mishael, Selenium removal from drinking water by adsorption to chitosan–clay composites and oxides: batch and columns tests, J. Hazard. Mater., 183 (2010) 590–595.
  9. N. Geoffroy, G. Demopoulos, The elimination of selenium (IV) from aqueous solution by precipitation with sodium sulfide, J. Hazard. Mater., 185 (2011) 148–154.
  10. X. Hu, F. Wang, M.L. Hanson, Selenium concentration, speciation and behavior in surface waters of the Canadian prairies, Sci. Total Environ., 407 (2009) 5869–5876.
  11. A. Manceau, D.L. Gallup, Removal of selenocyanate in water by precipitation: characterization of copper-selenium precipitate by x-ray diffraction, infrared, and X-ray absorption spectroscopy, Environ. Sci. Technol., 31 (1997) 968–976.
  12. S. Sharmasarkar, G.F. Vance, Selenite–selenate sorption in surface coal mine environment, Adv. Environ. Res., 7 (2002) 87–95.
  13. J. Torres, V. Pintos, L. Gonzatto, S. Dominguez, C. Kremer, E. Kremer, Selenium chemical speciation in natural waters: Protonation and complexation behavior of selenite and selenate in the presence of environmentally relevant cations, Chem. Geol., 288 (2011) 32–38.
  14. N. Zhang, L.-S. Lin, D. Gang, Adsorptive selenite removal from water using iron-coated GAC adsorbents, Water Res., 42 (2008) 3809–3816.
  15. Y. Zhang, C. Amrhein, A. Chang, W.T. Frankenberger, Effect of zero-valent iron and a redox mediator on removal of selenium in agricultural drainage water, Sci. Total Environ., 407 (2008) 89–96.
  16. E. Kikuchi, H. Sakamoto, Kinetics of the reduction reaction of selenate ions by TiO2 photocatalyst, J. Electrochem. Soc., 147 (2000) 4589–4593.
  17. T.T. Tan, M. Zaw, D. Beydoun, R. Amal, The formation of nanosized selenium–titanium dioxide composite semiconductors by photocatalysis, J. Nanopart. Res., 4 (2002) 541–552.
  18. B.A. Labaran, M.S. Vohra, Photocatalytic removal of selenite and selenate species: effect of EDTA and other process variables, Environ. Technol., 35 (2014) 1091–1100.
  19. M.S. Vohra, Selenocyanate (SeCN) contaminated wastewater treatment using TiO2 photocatalysis: SeCN complex destruction, intermediates formation, and removal of selenium species, Fresen. Environ. Bull., 24 (2015) 1108–1118.
  20. M. Kashiwa, S. Nishimoto, K. Takahashi, M. Ike, M. Fujita, Factors affecting soluble selenium removal by a selenate-reducing bacterium Bacillus sp. SF-1, J. Biosci. Bioeng., 89 (2000) 528–533.
  21. G. Banuelos, G. Cardon, B. Mackey, J. Ben-Asher, L. Wu, P. Beuselinck, S. Akohoue, S. Zambrzuski, Boron and selenium removal in boron-laden soils by four sprinkler irrigated plant species, J. Environ. Qual., 22 (1993) 786–792.
  22. V. Mavrov, S. Stamenov, E. Todorova, H. Chmiel, T. Erwe, New hybrid electrocoagulation membrane process for removing selenium from industrial wastewater, Desalination, 201 (2006) 290–296.
  23. A.P. Murphy, Removal of selenate from water by chemical reduction, Ind. Eng. Chem. Res., 27 (1988) 187–191.
  24. K. Shi, X. Wang, Z. Guo, S. Wang, W. Wu, Se (IV) sorption on TiO2: Sorption kinetics and surface complexation modeling, Colloid Surface A, 349 (2009) 90–95.
  25. K. Foo, B. Hameed, Insights into the modeling of adsorption isotherm systems, Chem. Eng. J., 156 (2010) 2–10.
  26. Y.-S. Ho, Review of second-order models for adsorption systems, J. Hazard. Mater., 136 (2006) 681–689.
  27. H. Qiu, L. Lv, B.-c. Pan, Q.-j. Zhang, W.-m. Zhang, Q.-x. Zhang, Critical review in adsorption kinetic models, J. Zhejiang Univ- Sci. A, 10 (2009) 716–724.
  28. R. Schmuhl, K. Keizer, A. van den Berg, E. Johan, D.H. Blank, Controlling the transport of cations through permselective mesoporous alumina layers by manipulation of electric field and ionic strength, J. Colloid Interface Sci., 273 (2004) 331–338.
  29. N.P. Cheremisinoff, P.N. Cheremisinoff, Carbon adsorption for pollution control, PTR Prentice Hall, New York, USA 1993.
  30. C. Su, D.L. Suarez, Selenate and selenite sorption on iron oxides an infrared and electrophoretic study, Soil Sci. Soc. Am. J., 64 (2000) 101–111.
  31. U. Saha, C. Liu, L. Kozak, P. Huang, Kinetics of selenite adsorption on hydroxyaluminum-and hydroxyaluminosilicate- montmorillonite complexes, Soil Sci. Soc. Am. J., 68 (2004) 1197–1209.
  32. J.S. Yamani, A.W. Lounsbury, J.B. Zimmerman, Adsorption of selenite and selenate by nanocrystalline aluminum oxide, neat and impregnated in chitosan beads, Water Res., 50 (2014) 373–381.
  33. S. Li, N. Deng, Separation and preconcentration of Se (IV)/Se (VI) species by selective adsorption onto nanometer-sized titanium dioxide and determination by graphite furnace atomic absorption spectrometry, Anal. Bioanal. Chem., 374 (2002) 1341–1345.
  34. V.N.H. Nguyen, D. Beydoun, R. Amal, Photocatalytic reduction of selenite and selenate using TiO2 photocatalyst, J. Photochem. Photobiol. A, 171 (2005) 113–120.
  35. V.N.H. Nguyen, R. Amal, D. Beydoun, Photocatalytic reduction of selenium ions using different TiO2 photocatalysts, Chem. Eng. Sci., 60 (2005) 5759–5769.
  36. S. Sanuki, K. Arai, T. Kojima, S. Nagaoka, H. Majima, Photocatalytic reduction of selenate and selenite solutions using TiO2 powders, Metall. Mater. Trans. B., 30 (1999) 15–20.
  37. S. Sanuki, K. Shako, S. Nagaoka, H. Majima, Photocatalytic reduction of Se ions using suspended anatase powders, Mater. Trans. JIM, 41 (2000) 799–805.
  38. T. Tan, D. Beydoun, R. Amal, Effects of organic hole scavengers on the photocatalytic reduction of selenium anions, J. Photochem. Photobiol. A, 159 (2003) 273–280.
  39. T.T.Y. Tan, C.K. Yip, D. Beydoun, R. Amal, Effects of nano-Ag particles loading on TiO2 photocatalytic reduction of selenate ions, Chem. Eng. J., 95 (2003) 179–186.
  40. T.T. Tan, D. Beydoun, R. Amal, Photocatalytic reduction of Se (VI) in aqueous solutions in UV/TiO2 system: importance of optimum ratio of reactants on TiO2 surface, J. Mol. Catal. A, 202 (2003) 73–85.
  41. T.T. Tan, D. Beydoun, R. Amal, Photocatalytic reduction of Se (VI) in aqueous solutions in UV/TiO2 system: kinetic modeling and reaction mechanism, J. Phys. Chem. B, 107 (2003) 4296–4303.
  42. G. Liu, J. Zhao, Photocatalytic degradation of dye sulforhodamine B: a comparative study of photocatalysis with photosensitization, New J. Chem., 24 (2000) 411–417.
  43. S. Pelet, J.-E. Moser, M. Grätzel, Cooperative effect of adsorbed cations and iodide on the interception of back electron transfer in the dye sensitization of nanocrystalline TiO2, J. Phys. Chem. B, 104 (2000) 1791–1795.
  44. Y. Xu, C.H. Langford, UV- or visible-light-induced degradation of X3B on TiO2 nanoparticles: the influence of adsorption, Langmuir, 17 (2001) 897–902.
  45. J. Zhao, T. Wu, K. Wu, K. Oikawa, H. Hidaka, N. Serpone, Photoassisted degradation of dye pollutants. 3. Degradation of the cationic dye rhodamine B in aqueous anionic surfactant/TiO2 dispersions under visible light irradiation: evidence for the need of substrate adsorption on TiO2 particles, Environ. Sci. Technol., 32 (1998) 2394–2400.
  46. F. Hingston, A. Posner, J. Quirk, Competitive adsorption of negatively charged ligands on oxide surfaces, Discuss. Faraday Soc., 52 (1971) 334–342.
  47. K.-H. Goh, T.-T. Lim, Geochemistry of inorganic arsenic and selenium in a tropical soil: effect of reaction time, pH, and competitive anions on arsenic and selenium adsorption, Chemosphere, 55 (2004) 849–859.
  48. C.-H. Wu, S.-L. Lo, C.-F. Lin, Competitive adsorption of molybdate, chromate, sulfate, selenate, and selenite on γ-Al2O3, Colloid Surface A, 166 (2000) 251–259.
  49. L.S. Balistrieri, T. Chao, Adsorption of selenium by amorphous iron oxyhydroxide and manganese dioxide, Geochim. Cosmochim. Acta, 54 (1990) 739–751.
  50. L.S. Balistrieri, T.T. Chao, Selenium adsorption by Goethite1, Soil Sci. Soc. Am. J., 51 (1987) 1145–1151.
  51. K.F. Hayes, G. Redden, W. Ela, J.O. Leckie, Surface complexation models: an evaluation of model parameter estimation using FITEQL and oxide mineral titration data, J. Colloid Interface Sci., 142 (1991) 448–469.
  52. M.S. Vohra, A.P. Davis, Adsorption of Pb (II), EDTA, and Pb (II)-EDTA onto TiO2, J. Colloid Interface Sci., 198 (1998) 18–26.
  53. B.A. Labaran, Competitive Photocatalytic Removal of Aqueous Phase Selenocyanate (SeCN) in the Presence of Some Critical Co-pollutants: Adsorption Modelling, Process Kinetics, and Reaction Mechanisms, (Thesis, PhD) King Fahd University of Petroleum and Minerals, Dhahran, Kingdom of Saudi Arabia, May 2017.
  54. K.F. Hayes, A.L. Roe, G.E. Brown Jr, K.O. Hodgson, J.O. Leckie, G.A. Parks, In situ X-ray absorption study of surface complexes: selenium oxyanions on α-FeOOH, Science, 238 (1987) 783–786.
  55. P.V. Brady, The physics and chemistry of mineral surfaces, CRC Press 1996.
  56. C. Papelis, G.E. Brown Jr, G.A. Parks, J.O. Leckie, X-ray absorption spectroscopic studies of cadmium and selenite adsorption on aluminum oxides, Langmuir, 11 (1995) 2041–2048.
  57. E.J. Boyle-Wight, L.E. Katz, K.F. Hayes, Macroscopic studies of the effects of selenate and selenite on cobalt sorption to γ-Al2O3, Environ. Sci. Technol., 36 (2002) 1212–1218.
  58. J. Huang, Z. Wu, L. Chen, Y. Sun, Surface complexation modeling of adsorption of Cd (II) on graphene oxides, J. Mol. Liq., 209 (2015) 753–758.
  59. C. Papelis, P.V. Roberts, J.O. Leckie, Modeling the rate of cadmium and selenite adsorption on micro-and mesoporous transition aluminas, Environ. Sci. Technol., 29 (1995) 1099–1108.
  60. Y.Y. Gurkan, E. Kasapbasi, Z. Cinar, Enhanced solar photocatalytic activity of TiO2 by selenium (IV) ion-doping: characterization and DFT modeling of the surface, Chem. Eng. J., 214 (2013) 34–44.
  61. W.E. Sartz Jr, K.J. Wynne, D.M. Hercules, X-ray photoelectron spectroscopic investigation of Group VIA elements, Anal. Chem., 43 (1971) 1884–1887.
  62. K.S. Smith, Metal sorption on mineral surfaces: an overview with examples relating to mineral deposits, Environ. Geochem. Miner. Depos. B, 6 (1999) 161–182.
  63. S. Hamada, Acid decomposition equilibrium of selenocyanate ion, Nippon Kagaku Zasshi, 82 (1961) 1327–1330.