1. M. Ghaedi, F. Karimi, B. Barazesh, R. Sahraei, A. Daneshfar, Removal of Reactive Orange 12 from aqueous solutions by adsorption on tin sulfide nanoparticle loaded on activated carbon, J. Ind. Eng. Chem., 19 (2013) 756–763.
  2. T. Robinson, G. McMullan, R. Marchant, P. Nigam, Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative, Bioresour. Technol., 77 (2001) 247–255.
  3. I.L. Finar, Organic Chemistry: The Fundamental Princiles, 6th ed., Addison Wesley Longman Ltd, England, 1986.
  4. C. Namasivayam, D. Kavitha, Removal of Congo Red from water by adsorption onto activated carbon prepared from coir pith, an agricultural solid waste, Dyes Pigments, 54 (2002) 47–58.
  5. A.B. dos Santos, I.A.E. Bisschops, F.J. Cervantes, J.B. van Lier, Effect of different redox mediators during thermophilic azo dye reduction by anaerobic granular sludge and comparative study between mesophilic (30°C) and thermophilic (55°C) treatments for decolourisation of textile wastewaters, Chemosphere, 55 (2004) 1149–1157.
  6. V. Shenai, Azo dyes on textiles vs German ban, an objective assessment, Chem. Weekly, 12 (1996) 33–44.
  7. D. Brown, Effects of colorants in the aquatic environment, Ecotoxicol. Environ. Safety, 13 (1987) 139–147.
  8. F. Gähr, F. Hermanutz, W. Oppermann, Ozonation – an important technique to comply with new German laws for textile wastewater treatment, Water Sci. Technol., 30 (1994) 255–263.
  9. K.-C. Chen, J.-Y. Wu, C.-C. Huang, Y.-M. Liang, S.-C.J. Hwang, Decolorization of azo dye using PVA-immobilized microorganisms, J. Biotechnol., 101 (2003) 241–252.
  10. A. Mittal, J. Mittal, A. Malviya, D. Kaur, V.K. Gupta, Decoloration treatment of a hazardous triarylmethane dye, Light Green SF (Yellowish) by waste material adsorbents, J. Colloid Interface Sci., 342 (2010) 518–527.
  11. R. Jain, S. Sikarwar, Adsorptive removal of erythrosine dye onto activated low cost de-oiled mustard, J. Hazard. Mater., 164 (2009) 627–633.
  12. Y. Zhu, P. Kolar, Adsorptive removal of p-cresol using coconut shell-activated char, J. Environ. Chem. Eng., 2 (2014) 2050–2058.
  13. M.B. Ahmed, J.L. Zhou, H.H. Ngo, W. Guo, Adsorptive removal of antibiotics from water and wastewater: Progress and challenges, Sci. Total Environ., 532 (2015) 112–126.
  14. M. Wawrzkiewicz, M. Wiśniewska, V.M. Gun’ko, V.I. Zarko, Adsorptive removal of acid, reactive and direct dyes from aqueous solutions and wastewater using mixed silica–alumina oxide, Powder Technol., 278 (2015) 306–315.
  15. M. Ghaedi, Comparison of cadmium hydroxide nanowires and silver nanoparticles loaded on activated carbon as new adsorbents for efficient removal of Sunset yellow: Kinetics and equilibrium study, Spectrochim. Acta Part A: Molec. Biomolec. Spectrosc., 94 (2012) 346–351.
  16. F. Haghseresht, S. Nouri, J.J. Finnerty, G.Q. Lu, Effects of surface chemistry on aromatic compound adsorption from dilute aqueous solutions by activated carbon, J. Phys. Chem. B, 106 (2002) 10935–10943.
  17. W. Wang, C.G. Silva, J.L. Faria, Photocatalytic degradation of Chromotrope 2R using nanocrystalline TiO2/activated-carbon composite catalysts, Appl. Catal. B: Environ., 70 (2007) 470–478.
  18. H. Choi, E. Stathatos, D.D. Dionysiou, Sol–gel preparation of mesoporous photocatalytic TiO2 films and TiO2/Al2O3 composite membranes for environmental applications, Appl. Catal. B: Environ., 63 (2006) 60–67.
  19. J. Qiu, Z. Wang, H. Li, L. Xu, J. Peng, M. Zhai, C. Yang, J. Li, G. Wei, Adsorption of Cr(VI) using silica-based adsorbent prepared by radiation-induced grafting, J. Hazard. Mater., 166 (2009) 270–276.
  20. T. Yokoi, Y. Kubota, T. Tatsumi, Amino-functionalized mesoporous silica as base catalyst and adsorbent, Appl. Catal. A: General, 421–422 (2012) 14–37.
  21. M. Karthikeyan, K.K. Satheesh Kumar, K.P. Elango, Conducting polymer/alumina composites as viable adsorbents for the removal of fluoride ions from aqueous solution, J. Fluorine Chem., 130 (2009) 894–901.
  22. M.E. Mahmoud, M.M. Osman, O.F. Hafez, A.H. Hegazi, E. Elmelegy, Removal and preconcentration of lead (II) and other heavy metals from water by alumina adsorbents developed by surface-adsorbed-dithizone, Desalination, 251 (2010) 123–130.
  23. R.I. Yousef, B. El-Eswed, A.a.H. Al-Muhtaseb, Adsorption characteristics of natural zeolites as solid adsorbents for phenol removal from aqueous solutions: Kinetics, mechanism, and thermodynamics studies, Chem. Eng. J., 171 (2011) 1143–1149.
  24. L. Damjanović, V. Rakić, V. Rac, D. Stošić, A. Auroux, The investigation of phenol removal from aqueous solutions by zeolites as solid adsorbents, J. Hazard. Mater., 184 (2010) 477–484.
  25. F. Raposo, M.A. De La Rubia, R. Borja, Methylene blue number as useful indicator to evaluate the adsorptive capacity of granular activated carbon in batch mode: Influence of adsorbate/ adsorbent mass ratio and particle size, J. Hazard. Mater., 165 (2009) 291–299.
  26. C. Hung-Lung, L. Kuo-Hsiung, C. Shih-Yu, C. Ching-Guan, P. San-De, Dye adsorption on biosolid adsorbents and commercially activated carbon, Dyes Pigments, 75 (2007) 52–59.
  27. H. Meng, W. Hou, X. Xu, J. Xu, X. Zhang, TiO2-loaded activated carbon fiber: Hydrothermal synthesis, adsorption properties and photo catalytic activity under visible light irradiation, Particuology, 14 (2014) 38–43.
  28. E.-C. Su, B.-S. Huang, C.-C. Liu, M.-Y. Wey, Photocatalytic conversion of simulated EDTA wastewater to hydrogen by pH-resistant Pt/TiO2–activated carbon photocatalysts, Renew. Energy, 75 (2015) 266–271.
  29. X. Fu, H. Yang, G. Lu, Y. Tu, J. Wu, Improved performance of surface functionalized TiO2/activated carbon for adsorption–photocatalytic reduction of Cr(VI) in aqueous solution, Mater. Sci. Semicond. Process., 39 (2015) 362–370.
  30. J. Song, X. Wang, J. Huang, J. Ma, X. Wang, H. Wang, R. Ma, P. Xia, J. Zhao, High performance of N-doped TiO2 magnetic activated carbon composites under visible light illumination: Synthesis and application in three-dimensional photoelectrochemical process, Electrochim. Acta, 222 (2016) 1–11.
  31. M.A. Vishnuganth, N. Remya, M. Kumar, N. Selvaraju, Photocatalytic degradation of carbofuran by TiO2-coated activated carbon: Model for kinetic, electrical energy per order and economic analysis, J. Environ. Manage., 181 (2016) 201–207.
  32. Z. Zhang, Y. Xu, X. Ma, F. Li, D. Liu, Z. Chen, F. Zhang, D.D. Dionysiou, Microwave degradation of methyl orange dye in aqueous solution in the presence of nano-TiO2-supported activated carbon (supported-TiO2/AC/MW), J. Hazard. Mater., 209–210 (2012) 271–277.
  33. M. Nasirian, M. Mehrvar, Modification of TiO2 to enhance photocatalytic degradation of organics in aqueous solutions, J. Environ. Chem. Eng., 4 (2016) 4072–4082.
  34. K. Pomoni, A. Vomvas, C. Trapalis, Dark conductivity and transient photoconductivity of nanocrystalline undoped and N-doped TiO2 sol–gel thin films, Thin Solid Films, 516 (2008) 1271–1278.
  35. M.I. Kandah, J.-L. Meunier, Removal of nickel ions from water by multi-walled carbon nanotubes, J. Hazard. Mater., 146 (2007) 283–288.
  36. V. Gómez, M.S. Larrechi, M.P. Callao, Kinetic and adsorption study of acid dye removal using activated carbon, Chemosphere, 69 (2007) 1151–1158.
  37. Z. Ding, X. Hu, P.L. Yue, G.Q. Lu, P.F. Greenfield, Synthesis of anatase TiO2 supported on porous solids by chemical vapor deposition, Catal. Today, 68 (2001) 173–182.
  38. S.X. Liu, X.Y. Chen, X. Chen, A TiO2/AC composite photocatalyst with high activity and easy separation prepared by a hydrothermal method, J. Hazard. Mater., 143 (2007) 257–263.
  39. C. Ngamsopasiriskun, S. Charnsethikul, S. Thachepan, A. Songsasen, Removal of phenol in aqueous solution by nanocrystalline TiO2/activated carbon composite catalyst, Kasetsart J. (Nat. Sci.), 44 (2010) 1176–1182.
  40. C.-C. Wang, J.Y. Ying, Sol−Gel synthesis and hydrothermal processing of anatase and rutile titania nanocrystals, Chem. Mater., 11 (1999) 3113–3120.
  41. A.C. Martins, A.L. Cazetta, O. Pezoti, J.R.B. Souza, T. Zhang, E.J. Pilau, T. Asefa, V.C. Almeida, Sol-gel synthesis of new TiO2/activated carbon photocatalyst and its application for degradation of tetracycline, Ceramics Int., 43 (2017) 4411– 4418.
  42. R. Bacsa, J. Kiwi, T. Ohno, P. Albers, V. Nadtochenko, Preparation, testing and characterization of doped TiO2 active in the peroxidation of biomolecules under visible light, J. Phys. Chem. B, 109 (2005) 5994–6003.
  43. P. Singh, M.C. Vishnu, K.K. Sharma, A. Borthakur, P. Srivastava, D.B. Pal, D. Tiwary, P.K. Mishra, Photocatalytic degradation of Acid Red dye stuff in the presence of activated carbon-TiO2 composite and its kinetic enumeration, J. Water Process Eng., 12 (2016) 20–31.
  44. Y. Shao, C. Cao, S. Chen, M. He, J. Fang, J. Chen, X. Li, D. Li, Investigation of nitrogen doped and carbon species decorated TiO2 with enhanced visible light photocatalytic activity by using chitosan, Appl. Catal. B: Environ., 179 (2015) 344–351.
  45. J. Wang, W. Sun, Z. Zhang, Z. Jiang, X. Wang, R. Xu, R. Li, X. Zhang, Preparation of Fe-doped mixed crystal TiO2 catalyst and investigation of its sonocatalytic activity during degradation of azo fuchsine under ultrasonic irradiation, J. Colloid Interf. Sci., 320 (2008) 202–209.
  46. O. Carp, C.L. Huisman, A. Reller, Photoinduced reactivity of titanium dioxide, Progr. Solid State Chem., 32 (2004) 33–177.
  47. X. Quan, Y. Zhang, S. Chen, Y. Zhao, F. Yang, Generation of hydroxyl radical in aqueous solution by microwave energy using activated carbon as catalyst and its potential in removal of persistent organic substances, J. Molec. Catal. A: Chemical, 263 (2007) 216–222.
  48. J. Wang, G. Zhang, Z. Zhang, X. Zhang, G. Zhao, F. Wen, Z. Pan, Y. Li, P. Zhang, P. Kang, Investigation on photocatalytic degradation of ethyl violet dyestuff using visible light in the presence of ordinary rutile TiO2 catalyst doped with upconversion luminescence agent, Water Res., 40 (2006) 2143–2150.
  49. Y.S. Ho, G. McKay, Pseudo-second order model for sorption processes, Process Biochem., 34 (1999) 451–465.
  50. S.H. Chien, W.R. Clayton, Application of Elovich equation to the kinetics of phosphate release and sorption in soils, Soil Sci. Soc. Amer. J., 44 (1980) 265–268.
  51. G. McKay, The adsorption of dyestuffs from aqueous solution using activated carbon: Analytical solution for batch adsorption based on external mass transfer and, Chem. Eng. J., 27 (1983) 187–196.
  52. E. Erdem, G. Çölgeçen, R. Donat, The removal of textile dyes by diatomite earth, J. Colloid Interf. Sci., 282 (2005) 314–319.
  53. A. Dąbrowski, Adsorption - from theory to practice, Adv. Colloid Interf. Sci., 93 (2001) 135–224.
  54. Y.-S. Ho, A.E. Ofomaja, Kinetics and thermodynamics of lead ion sorption on palm kernel fibre from aqueous solution, Process Biochem., 40 (2005) 3455–3461.
  55. A. Rodríguez, J. García, G. Ovejero, M. Mestanza, Adsorption of anionic and cationic dyes on activated carbon from aqueous solutions: Equilibrium and kinetics, J. Hazard. Mater., 172 (2009) 1311–1320.
  56. H. Freundlich, W. Heller, The Adsorption of cis- and trans-Azobenzene, J. Amer. Chem. Soc., 61 (1939) 2228–2230.
  57. X.-s. Wang, Y. Qin, Equilibrium sorption isotherms for of Cu2+ on rice bran, Process Biochem., 40 (2005) 677–680.
  58. C. Aharoni, S. Levinson, I. Ravina, D.L. Sparks, Kinetics of soil chemical reactions: relationships between empirical equations and diffusion models, Soil Sci. Soc. Amer. J., 55 (1991) 1307–1312.