References

  1. N. Savage, M.S. Diallo, Nanomaterials and water purification: Opportunities and challenges, J. Nanopart. Res., 7 (2005) 331–342.
  2. R. Das, Md.E. Ali, S. Bee, A. Hamid, S. Ramakrishna, Z.Z. Chowdhury, Carbon nanotube membranes for water purification: A bright future in water desalination, Desalination, 336 (2014) 97–109.
  3. K. Ritos, D. Mattia, F. Calabrò, J.M. Reese, Flow enhancement in nanotubes of different materials and lengths, J. Chem. Phys., 140 (2014) 014702.
  4. P.S. Goh, A.F. Ismail, B.C. Ng, Carbon nanotubes for desalination: Performance evaluation and current hurdles, Desalination, 308 (2013) 2–14.
  5. J.H. Walther, K. Ritos, E.R. Cruz-Chu, C.M. Megaridis, P. Koumoutsakos, Barriers to superfast water transport in carbon nanotube membranes, Nano Lett., 13 (2013) 1910–1914.
  6. M. Borg, J. Reese, Multiscale simulation of enhanced water flow in nanotubes, MRS Bulletin, 42 (2017) 294–299.
  7. W. Li, W. Wang, Y. Zhang, Y. Yan, P. Kral, J. Zhang, Highly efficient water desalination in carbon nanocones, Carbon, 129 (2018) 374–379.
  8. S.J. Kim, S.H. Ko, K.H. Kang, J. Han, Direct seawater desalination by ion concentration polarization, Nature Nanotech., 5 (2010) 297–301.
  9. J. Li, Y. Long, C. Xu, H. Tian, Y. Wu, F. Zha, Continuous, highflux and efficient oil/water separation assisted by an integrated system with opposite wettability, Appl. Surf. Sci., 433 (2018) 374–380.
  10. K.P. Travis, K.E. Gubbins, Poiseuille flow of Lennard-Jones fluids in narrow slit pores, J. Chem. Phys., 112 (1999) 1984–1994.
  11. J. Delhommelle, D.J. Evans, Configurational temperature profile in confined fluids. I. Atomic fluid, J. Chem. Phys., 114 (2001) 6229–6235.
  12. F. Sofos, T. Karakasidis, A. Liakopoulos, Non-equilibrium molecular dynamics investigation of parameters affecting planarnanochannel flows, Cont. Eng. Sci., 2 (2009) 283–298.
  13. W.D. Nicholls, M.K. Borg, D.A. Lockerby, J.M. Reese, Water transport through (7,7) carbon nanotubes of different lengths using molecular dynamics, Microfluid. Nanofluid., 12 (2012) 257–264.
  14. J. Su, H. Guo, Effect of nanochannel dimension on the transport of water molecules, J. Phys. Chem. B, 116 (2012) 5925−5932.
  15. A.T. Celebi, M. Barisik, A. Beskok, Surface charge dependent transport of water in graphene nano channels, Microfluid, Nanofluid., 22 (2018) 7.
  16. D. Kasiteropoulou, T.E. Karakasidis, A. Liakopoulos, Dissipative particle pynamics investigation of parameters affecting planar nanochannel flows, Mater. Sci. Eng., B 176 (2010) 176– 179.
  17. M. Kalweit, D. Drikakis, Coupling strategies for hybrid molecular- continuum simulation methods, Proc. IMechE Part C: J. Mech. Eng. Sci., 222 (2008) 797–806.
  18. N. Asproulis, D. Drikakis, An artificial neural network based multiscale method for hybrid atomistic-continuum simulations, Microfluid. Nanofluid., 15 (2013) 559–574.
  19. P. Koumoutsakos, Multiscale flow simulations using particles, Annu. Rev. Fluid Mech., 37 (2005) 457–487.
  20. H.J.C. Berendsen, J.R. Grigera, T.P. Straatsma, The missing term in effective pair potentials, J. Phys. Chem., 91 (1987) 6269–6271.
  21. Y. Wu, H.L. Tepper, G.A. Voth, Flexible simple point-charge water model with improved liquid-state properties, J. Chem. Phys., 124 (2006) 024503.
  22. F. Paesani, W. Zhang, D.A. Case, T.E. Cheatham, G.A. Voth, An accurate and simple quantum model for liquid water, J. Chem. Phys., 125 (2006) 184507.
  23. W.L. Jorgensen, J. Chandrasekhar, J.D. Madura, R.W. Impey, M.L. Klein, Comparison of simple potential functions for simulating liquid water, J. Chem. Phys., 79 (1983) 926.
  24. D.J. Price, C.L. Brooks, A modified TIP3P water potential for simulation with Ewald summation, J. Chem. Phys., 121 (2004) 10096.
  25. J.L.F. Abascal, C. Vega, A general purpose model for the condensed phases of water: TIP4P/2005, J. Chem. Phys., 123 (2005) 234505.
  26. A.P. Markesteijn, R. Hartkamp, S. Luding, J. Westerweel, A comparison of the value of viscosity for several water models using Poiseuille flow in a nano-channel, J. Chem. Phys., 136 (2012) 134104.
  27. M. Orsi, Comparative assessment of the ELBA coarse-grained model for water, Mol. Phys., 112 (2014) 1566–1576.
  28. S. Chodankar, E. Perret, K. Nygård, O. Bunk, D.K. Satapathy, R.M. Espinosa Marzal, T.E. Balmer, M. Heuberger, J.F. van der Veen, Density profile of water in nanoslit, Europhys. Lett., 99 (2012) 26001.
  29. F. Sedlmeier, D. Horinek, R.R. Netz, Nanoroughness, intrinsic density profile, and rigidity of the air-water interface, Phys. Rev. Lett., 103 (2009) 136102.
  30. J. Horbach, S. Succi, Lattice-Boltzmann versus molecular dynamics simulation of nanoscale hydrodynamic flows, Phys. Rev. Lett., 96 (2006) 224503.
  31. X.Y. Liu, M.G. He, Y. Zhang, Viscosity of water in the region around the critical point, J. Supercrit. Fluids, 63 (2012) 150–154.
  32. J.S. Medina, R. Prosmiti, P. Villareal, G. Delgado-Barrio, G. Winter, B. Gonzalez, J.V. Aleman, C. Collado, Molecular dynamics simulations of rigid and flexible water models: Temperature dependence of viscosity, Chem. Phys., 388 (2011) 9–18.
  33. G.S. Fanourgakis, J. Medina, R. Prosmiti, Determining the bulk viscosity of rigid water models, J. Phys. Chem., A, 116 (2012) 2564–2570.
  34. F. Bresme, F. Romer, Heat transport in liquid water at extreme pressures: A non equilibrium molecular dynamics study, J. Mol. Liq., 185 (2013) 1–7.
  35. D. Arismendi-Arrieta, J.S. Medina, G.S. Fanourgakis, R. Prosmiti, G. Delgado-Barrio, Simulating liquid water for determining its structural and transport properties, Appl. Radiat. Isot., 83 (2014) 115–121.
  36. K. Deepak, M. Frank, D. Drikakis, N. Asproulis, Thermal properties of a water-copper nanofluid in a graphene channel, J. Comput. Theor. Nanosci., 13 (2016) 79–83.
  37. M. Frank, D. Drikakis, Solid-like heat transfer in confined liquids, Microfluid. Nanofluid., 21 (2017) 148.
  38. M.E. Caplan, A. Giri, P.E. Hopkins, Analytical model for the effects of wetting on the thermal boundary conductance across solid/classical liquid interfaces, J. Chem. Phys., 140 (2014) 154701.
  39. B. Ramos-Alvarado, S. Kumar, G.P. Peterson, Solid-liquid thermal transport and its relationship with wettability and the interfacial liquid structure, J. Phys. Chem. Lett., 7 (2016) 3497–3501.
  40. N.V. Priezjev, Effect of surface roughness on rate-dependent slip in simple fluids, J. Chem. Phys., 127 (2007) 144708.
  41. C. Zhang, Y. Chen, Slip behavior of liquid flow in rough nanochannels, Chem. Eng. Process.: Process Intensif., 85 (2014) 203– 208.
  42. N.V. Priezjev, S.M. Troian, Influence of periodic wall roughness on the slip behavior at liquid/solid interfaces: Molecular-scale simulations versus continuum predictions, J. Fluid Mech., 554 (2006) 25–46.
  43. M. Papanikolaou, M. Frank, D. Drikakis, Nanoflow over a fractal surface, Phys. Fluids, 28 (2016) 082001.
  44. C. Sendner, D. Horinek, L. Bocquet, R.R. Netz, Interfacial water at hydrophobic and hydrophilic surfaces: slip, viscosity, and diffusion, Langmuir, 25 (2009) 10768.
  45. M. Sega, M. Sbragaglia, L. Biferale, S. Succi, Regularization of the slip length divergence in water nanoflows by inhomogeneities at the Angstrom scale, Soft. Matter., 9 (2013) 8526–8531.
  46. O.I. Vinogradova, A.V. Belyaev, Wetting, roughness and flow boundary conditions, J. Phys.-Condens Mat., 23 (2011) 184104.
  47. W. Humphrey, A. Dalke, K. Schulten, VMD – visual molecular dynamics, J. Molec. Graphics, 14(1) (1996) 33–38.
  48. C. Vega, J.L.F. Abascal, Simulating water with rigid non-polarizable models: a general perspective, Phys. Chem. Chem. Phys., 13 (2011) 19663–19668.
  49. S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys., 117 (1995) 1–19.
  50. J.S. Hansen, J.T. Ottesen, Molecular dynamics simulations of oscillatory flows in microfluidic channels, Microfluid. Nanofluid., 2 (2006) 301–307.
  51. K.P. Travis, K.E. Gubbins, Poiseuille flow of Lennard-Jones fluids in narrow slit pores, J. Chem. Phys., 112 (2000) 1984–1994.
  52. K.P. Travis, B.D. Todd, D.J. Evans, Departure from Navier-Stokes hydrodynamics in confined liquids, Phys. Rev., E 55 (1997) 4288–4295.
  53. Y. Mao, Y. Zhang, Thermal conductivity, shear viscosity and specific heat of rigid water models, Chem. Phys. Lett., 542 (2012) 37–41.
  54. B.D. Todd, D.J. Evans, Temperature profile for Poiseuille flow, Phys. Rev., E 55 (1997) 2800–2807.
  55. S. Bernardi, B.D. Todd, D.J. Searles, Thermostating highly confined liquids, J. Chem. Phys., 132 (2010) 244706.
  56. B.Y. Cao, J. Sun, M. Chen, Z.Y. Guo, Molecular momentum transport at fluid-solid interfaces in MEMS/NEMS: A review, Int. J. Mol. Sci., 10 (2009) 4638–4706.
  57. F. Sofos, T. Karakasidis, A. Liakopoulos, Parameters affecting slip length at the nanoscale, J. Comput. Theor. Nanosci., 10 (2013) 1–3.
  58. A. Niavarani, N.V. Priezjev, Modeling the combined effect of surface roughness and shear rate on slip flow of simple fluids, Phys. Rev., E81 (2010) 011606.