1. Y. Yang, N. Lior, Performance analysis of combined humidified gas turbine power generation and multi-effect thermal vapor compression desalination systems. Part 1. The desalination unit and its combination with a steam-injected gas turbine power system, Desalination, 196 (2006) 84–104.
  2. J.H. Reif, W. Alhalabi, Solar-thermal powered desalination: its significant challenges and potential. Renew. Sustain. Energy Rev., 48 (2015) 152–165.
  3. M. Agustín. T. Delgado, G.R. Lourdes, Preliminary design of seawater and brackish water reverse osmosis desalination systems driven by low-temperature solar organic Rankine cycles (SORC). Energy Convers. Manage., 51 (2010) 2913–2920.
  4. M. Agustín. T. Delgado, G.R. Lourdes, Analysis and optimization of the low-temperature solar organic Rankine cycle (ORC), Energy Convers. Manage., 51 (2010) 2846–2856.
  5. J. Wang, Zh. Yan, P. Zhao, Y. Dai, Off-design performance analysis of a solar-powered organic Rankine cycle, Energy Convers. Manage., 80 (2014) 150–157.
  6. L. Qoaider, A. Liqreina, Optimization of dry cooled parabolic trough (CSP) plants for the desert regions of the Middle East and North Africa (MENA), Solar Energy, 122 (2015) 976–985.
  7. C. Parrado, A. Girard, F. Simon, E. Fuentealba, 2050 LCOE (Levelized Cost of Energy) projection for a hybrid PV (photovoltaic)-CSP (concentrated solar power) plant in the Atacama Desert, Chile, Energy, 94 (2016) 422–430.
  8. E.R. Shouman, N.M. Khattab, Future economic of concentrating solar power (CSP) for electricity generation in Egypt, Renew. Sustain. Energy Rev., 41 (2015) 1119–1127.
  9. D. Cocco, G. Cau, Energy and economic analysis of concentrating solar power plants based on parabolic trough and linear Fresnel collectors, J. Power Energy, 229 (2015) 677–688.
  10. M. Balghouthi, S. Trabelsi, M. BenAmara, A. BelHadjAli, A. Guizani, Potential of concentrating solar power (CSP) technology in Tunisia and the possibility of interconnection with Europe, Renew. Sustain. Energy Rev., 46 (2016) 1227–1248.
  11. B.J. Alqahtani, D.P. Echeverri, Integrated solar combined cycle power plants: paving the way for thermal solar, Appl. Energy, 169 (2016) 927–936.
  12. Y. Li, Y. Yang, Thermodynamic analysis of a novel integrated solar combined cycle, Appl. Energy, 122 (2014) 133–142.
  13. G. Franchini, A. Perdichizzi, S. Ravelli, G. Barigozzi, A comparative study between parabolic trough and solar tower technologies in solar Rankine cycle and integrated solar combined cycle plants, Solar Energy, 98 (2013) 302–314.
  14. G. Manente, High performance integrated solar combined cycles with minimum modifications to the combined cycle power plant design, Energy Convers. Manage., 111 (2016) 186–197.
  15. G.C. Bakos, D. Parsa, Technoeconomic assessment of an integrated solar combined cycle power plant in Greece using line-focus parabolic trough collectors, Renew. Energy, 60 (2013) 598–603.
  16. E.M.A. Mokheimer, Y.N. Dabwan, M.A. Habib, S.A.M. Said, F.A. Al-Sulaiman, Development and assessment of integrating parabolic trough collectors with steam generation side of gas turbine cogeneration systems in Saudi Arabia, Appl. Energy, 141 (2015) 131–142.
  17. E.M.A. Mokheimer, Y.N. Dabwan, M.A. Habib, Optimal integration of solar energy with fossil fuel gas turbine cogeneration plants using three different CSP technologies in Saudi Arabia, Appl. Energy, 185 (2017) 1268–1280.
  18. A. Rovira, R. Barbero, M.J. Montes, R. Abbas, F. Varela, Analysis and comparison of integrated solar combined cycles using parabolic troughs and linear Fresnel reflectors as concentrating systems, Appl. Energy, 162 (2016) 990–1000.
  19. Fichtner (Fichtner GmbH & Co. KG) and DLR (Deutsches Zentrum für Luft und Raumfahrt e.V.), MENA Regional Water Outlook, Part II, Desalination Using Renewable Energy, Task 1–Desalination Potential; Task 2–Energy Requirements; Task 3–Concentrate Management. 2011. Available at:
  20. B. Ortega-Delgado, L. García-Rodríguez, D.C. Alarcón-Padilla, Thermo economic comparison of integrating seawater desalination processes in a concentrating solar power plant of 5 MWe, Desalination, 392 (2016) 102–117.
  21. G. Fiorenza, V.K. Sharma, G. Braccio, Techno-economic evaluation of a solar powered water desalination plant, Energy Convers. Manage., 44 (2003) 2217–2240.
  22. P. Palenzuela, G. Zaragoza, D. Alarcón-Padilla, E. Guillén, M. Ibarra, J. Blanco, Assessment of different configurations for combined parabolic-trough (PT) solar power and desalination plants in arid regions, Energy, 36 (2011) 4950–4958.
  23. K.H.M. Bataineh, Multi-effect desalination plant combined with thermal compressor driven by steam generated by solar energy, Desalination, 385 (2016) 39–52.
  24. M.A. Sharaf, A.S. Nafey, L. García-Rodríguez, Thermo-economic analysis of solar thermal power cycles assisted MED-VC (multi effect distillation-vapor compression) desalination processes, Energy, 36 (2011) 2753–2764.
  25. B. Ortega-Delgado, P. Palenzuela, D.C. Alarcón-Padilla, Parametric study of a multi-effect distillation plant with thermal vapor compression for its integration into a Rankine cycle power block, Desalination, 394 (2016) 18–29.
  26. M. Moser, F. Trieb, T. Fichter, J. Kern, D. Hess, A flexible technoeconomic model for the assessment of desalination plants driven by renewable energies, Desal. Wat. Treat., 55 (2014) 3091–3105.
  27. A. Kouta, F. Al-Sulaima, M. Atif, S.B. Marshad, Entropy, exergy, and cost analyses of solar driven cogeneration systems using supercritical CO2 Brayton cycles and MEE-TVC desalination system, Energy Convers. Manage., 115 (2016) 253–264.
  28. G. Iaquaniello, A. Salladini, A. Mari, A.A. Mabrouk, H.E.S. Fath, Concentrating solar power (CSP) system integrated with MED–RO hybrid desalination, Desalination, 336 (2014) 121–128.
  29. F. Calise, M.D. Accadia, A. Macaluso, A. Piacentino, L. Vanoli, Exergetic and exergoeconomic analysis of a novel hybrid solar–geothermal polygeneration system producing energy and water, Energy Convers. Manage., 115 (2016) 200–220.
  30. M.A. Sharaf, A.S. Nafey, L. García-Rodríguez, Exergy and thermo-economic analyses of a combined solar organic cycle with multi effect distillation (MED) desalination process, Desalination, 272 (2011) 135–147.
  31. I. Baniasad Askari, M. Ameri, Techno economic feasibility analysis of Linear Fresnel solar field as thermal source of the MED/TVC desalination system, Desalination, 394 (2016) 1–17.
  32. R. Abbas, M.J. Montes, M. Piera, J.M. Martínez-Val, Solar radiation concentration features in linear Fresnel reflector arrays, Energy Convers. Manage., 54 (2012) 133–144.
  33. R. Abbas, M.J. Montes, M. Piera, J.M. Martínez-Val, High concentration linear Fresnel reflectors, Energy Convers. Manage., 72 (2013) 60–68.
  34. R. Gabbrielli, P. Castrataro, F. del Medico, M. di Palo, B. Lenzo, Levelized cost of heat for linear Fresnel concentrated solar systems, Energy Procedia, 49 (2014) 1340–1349.
  35. Y. Qiu, Y.L. He, Z.D. Cheng, K. Wang, Study on optical and thermal performance of a linear Fresnel solar reflector using molten salt as HTF with MCRT and FVM methods, Appl. Energy, 146 (2015) 162–173.
  39. A. Giostri, M. Binotti, P. Silva, E. Macchi, G. Manzolini, Comparison of two linear collectors in solar thermal plants: parabolic trough versus Fresnel, J. Solar Energy Eng., 135 (2011) 621–630.
  40. B. Kelly, D. Kearney, Parabolic Trough Solar System Piping Model Final Report, National Renewable Energy Laboratory Subcontract Report NREL/SR-550-40165, 2006. Available at:
  41. System Adviser Model (SAM), Version 2015.6.30. Available at:
  42. S. Loutatidou, H.A. Arafat, Techno-economic analysis of MED and RO desalination powered by low-enthalpy geothermal energy, Desalination, 365 (2015) 277–292.
  43. F. Verdier, R. Baten, Fichtner GmbH & Co.·KG, Bridging the Water Demand Gap: Desalination Consultative Workshop on Desalination and Renewable Energy, Muscat, Oman, 22–23 February, 2011.