1. Baltic Environmental Forum Estonia together with its partners is starting a new project: Project Baltic Actions for Reduction of Pollution of the Baltic Sea from Priority Hazardous Substances (BaltActHaz – Project nr. LIFE07 ENV/EE/000122), 2009.
  2. J. Gasperi, S. Garnaud, V. Rocher, R. Moilleron, Priority pollutants in wastewater and combined sewer overflow, Sci. Total Environ., 407 (2008) 263–272.
  3. O.B. Akpor, G.O. Ohiobor, T.D. Olaolu, Heavy metal pollutants in wastewater effluents: sources, effects and remediation, Adv. Biosci. Bioeng., 2 (2014) 37–43.
  4. R. Herojeet, M.S. Rishi, N. Kishore, Integrated approach of heavy metal pollution indices and complexity quantification using chemometric models in the Sirsa Basin, Nalagarh valley, Himachal Pradesh, India, Chin. J. Geochem., 34 (2015) 620–633.
  5. M.B. Lohani, A. Singh, D.C. Rupainwar, D.N. Dhar, Seasonal variations of heavy metal contamination in river Gomti of Lucknow city region, Environ. Monit. Assess., 147 (2008) 253–263.
  6. A.T. Tiruneh, A.O. Fadiran, J.S. Mtshali, Evaluation of the risk of heavy metals in sewage sludge intended for agricultural application in Swaziland, Int. J. Environ. Sci., 5 (2014) 197–216.
  7. P. Soonthornnonda, E.R. Christensen, Source apportionment of pollutants and flows of combined sewer wastewater, Water Res., 42 (2008) 1989–1998.
  8. K.L. Rule, S.D.W. Comber, D. Ross, A. Thornton, C.K. Makropoulos, R. Rautiu, Diffuse sources of heavy metals entering an urban wastewater catchment, Chemosphere, 63 (2006) 64–72.
  9. L. Sörme, R. Lagerkvist, Sources of heavy metals in urban wastewater in Stockholm, Sci. Total Environ., 298 (2002) 131–145.
  10. A. Plevri, D. Mamais, C. Noutsopoulos, C. Makropoulos, A. Andreadakis, K. Rippis, E. Smeti, E. Lytras, C. Lioumis, Promoting on-site urban wastewater reuse through MBR-RO treatment, Desal. Wat. Treat., 91 (2017) 2–11.
  11. A.M. Comerton, R.C. Andrews, D.M. Bagley, Evaluation of an MBR–RO system to produce high quality reuse water: microbial control, DBP formation and nitrate, Water Res., 39 (2005) 3982–3990.
  12. Y. Xiao, et al., Advanced treatment of semiconductor wastewater by combined MBR–RO technology, Desalination, 336 (2014) 168–178.
  13. B. Roger, E. Andrew, R. Eugene, Eds., Standard Methods for the Examination of Water and Wastewater, 23rd ed., American Public Health Association, American Water Works Association, Water Environment Federation, 2017.
  14. G.E. Üstün, Occurrence and removal of metals in urban wastewater treatment plants, J. Hazard. Mater., 172 (2009) 833–838.
  15. G. Gulyás, V. Pitás, B. Fazekas, Á. Kárpáti, Heavy metal balance in a communal wastewater treatment plant, Hung. J. Ind. Chem., 43 (2015) 1–6.
  16. M. Karvelas, A. Katsoyiannis, C. Samara, Occurrence and fate of heavy metals in the wastewater treatment process, Chemosphere, 53 (2003) 1201–1210.
  17. H.C. Yeh, W.E. Kastenberg, Health risk assessment of biodegradable volatile organic chemicals: a case study of PCE, TCE, DCE and VC, J. Hazard. Mater., 27 (1991) 111–126.
  18. J.B. Burch, T.M. Everson, R.K. Seth, M.D. Wirth, S. Chatterjee, Trihalomethane exposure and biomonitoring for the liver injury indicator, alanine aminotransferase, in the United States population (NHANES 1999–2006), Sci. Total Environ., 521–522 (2015) 226–234.
  19. P.J. Wilkie, G. Hatzimihalis, P. Koutoufides, M.A. Connor, The contribution of domestic sources to levels of key organic and inorganic pollutants in sewage: the case of Melbourne, Australia, Water Sci. Technol., 34 (1996) 63–70.
  20. J. Gasperi, S. Garnaud, V. Rocher, R. Moilleron, Priority pollutants in surface waters and settleable particles within a densely urbanised area: case study of Paris (France), Sci. Total Environ., 407 (2009) 2900–2908.
  21. P. Ventrice, D. Ventrice, E. Russo, G. De Sarro, Phthalates: European regulation, chemistry, pharmacokinetic and related toxicity, Environ. Toxicol. Pharmacol., 36 (2013) 88–96.
  22. Y. Hongjun, X. Wenjun, L. Qing, L. Jingtao, Y. Hongwen, L. Zhaohua, Distribution of phthalate esters in topsoil: a case study in the Yellow River Delta, China., Environ. Monit. Assess., 185 (2013) 8489–8500.
  23. X. Zheng, B.-T. Zhang, Y. Teng, Distribution of phthalate acid esters in lakes of Beijing and its relationship with anthropogenic activities, Sci. Total Environ., 476–477 (2014) 107–113.
  24. M. Pettinato, S. Chakraborty, H.A. Arafat, V. Calabro’, Eggshell: a green adsorbent for heavy metal removal in an MBR system, Ecotoxicol. Environ. Saf., 121 (2015) 57–62.
  25. K.B. Chipasa, Accumulation and fate of selected heavy metals in a biological wastewater treatment system, Waste Manage., 23 (2003) 135–143.
  26. P. Gikas, Single and combined effects of nickel (Ni(II)) and cobalt (Co(II)) ions on activated sludge and on other aerobic microorganisms: a review, J. Hazard. Mater., 159 (2008) 187–203.
  27. S. Di Fabio, S. Lampis, L. Zanetti, F. Cecchi, F. Fatone, Role and characteristics of problematic biofilms within the removal and mobility of trace metals in a pilot-scale membrane bioreactor, Process Biochem., 48 (2013) 1757–1766.
  28. K. Chon, H. KyongShon, J. Cho, Membrane bioreactor and nanofiltration hybrid system for reclamation of municipal wastewater: removal of nutrients, organic matter and micropollutants, Bioresour. Technol., 122 (2012) 181–188.
  29. D. Bolzonella, F. Fatone, S. di Fabio, F. Cecchi, Application of membrane bioreactor technology for wastewater treatment and reuse in the Mediterranean region: focusing on removal efficiency of non-conventional pollutants, J. Environ. Manage., 91 (2010) 2424–2431.
  30. R.S. Crane, et al., Fate and behaviour of copper and zinc in secondary biological wastewater treatment processes: I Evaluation of biomass adsorption capacity, Environ. Technol., 31 (2010) 705–723.
  31. A. Santos, S. Judd, The fate of metals in wastewater treated by the activated sludge process and membrane bioreactors: a brief review, J. Environ. Monit., 12 (2010) 110–118.
  32. G. Carletti, F. Fatone, D. Bolzonella, F. Cecchi, Occurrence and fate of heavy metals in large wastewater treatment plants treating municipal and industrial wastewaters, Water Sci. Technol., 57 (2008) 1329–1336.
  33. S. Malamis, E. Katsou, K. Takopoulos, P. Demetriou, M. Loizidou, Assessment of metal removal, biomass activity and RO concentrate treatment in an MBR–RO system, J. Hazard. Mater., 209–210 (2012) 1–8.
  34. F. Fatone, P. Battistoni, P. Pavan, F. Cecchi, Application of a membrane bioreactor for the treatment of low loaded domestic wastewater for water re-use, Water Sci. Technol., 53 (2006) 111–121.
  35. F. Fatone, A.L. Eusebi, P. Pavan, P. Battistoni, Exploring the potential of membrane bioreactors to enhance metals removal from wastewater: pilot experiences, Water Sci. Technol., 57 (2008) 505–511.
  36. K. Gurung, M.C. Ncibi, M. Sillanpää, Assessing membrane fouling and the performance of pilot-scale membrane bioreactor (MBR) to treat real municipal wastewater during winter season in Nordic regions, Sci. Total Environ., 579 (2017) 1289–1297.
  37. B. Mansell, et al., Comparison of two membrane bioreactors and an activated sludge plant with dual-media filtration: nutrient and priority pollutants removals, Proc. Water Environ. Fed., 20 (2004) 749–761.
  38. Q. Yang, H.T. Shang, J.L. Wang, Treatment of municipal wastewater by membrane bioreactor: a pilot study, Int. J. Environ. Pollut., 38 (2009) 280–288.
  39. E. Dialynas, E. Diamadopoulos, Integration of a membrane bioreactor coupled with reverse osmosis for advanced treatment of municipal wastewater, Desalination, 238 (2009) 302–311.
  40. A. Conklin, C. Eaton, K. Bourgeous, L. Holmes, K. Smith, J. Beatty, Pilot testing of a membrane bioreactor for metals removal, 22 (2007) 3338–3359.
  41. S. Martin Ruel, et al., On-site evaluation of the removal of 100 micro-pollutants through advanced wastewater treatment processes for reuse applications, Water Sci. Technol., 63 (2011) 2486–2497.
  42. K. Seriki, et al., SCOREPP Programme: Priority pollutants behaviour in end of pipe wastewater treatment plants, 2008.
  43. J. Boonnorat, C. Chiemchaisri, W. Chiemchaisri, K. Yamamoto, Microbial adaptation to biodegrade toxic organic micropollutants in membrane bioreactor using different sludge sources, Bioresour. Technol., 165 (2014) 50–59.
  44. R. Mailler, et al., Removal of a wide range of emerging pollutants from wastewater treatment plant discharges by micro-grain activated carbon in fluidized bed as tertiary treatment at large pilot scale, Sci. Total Environ., 542 (2016) 983–996.
  45. A. Waniek, M. Bodzek, K. Konieczny, Trihalomethane removal from water using membrane processes, Pol. J. Environ. Stud., 11 (2002) 171–178.
  46. S. Mazloomi, R. Nabizadh, S. Nasseri, K. Kaddafi, S. Nazmara, Efficiency of domestic reverse osmosis in removal of trihalomethanes from drinking water, J. Environ. Health Sci. Eng, 6 (2009) 301–306.
  47. F. Fatone, S. Di Fabio, D. Bolzonella, F. Cecchi, Fate of aromatic hydrocarbons in Italian municipal wastewater systems: an overview of wastewater treatment using conventional activated-sludge processes (CASP) and membrane bioreactors (MBRs), Water Res., 45 (2011) 93–104.
  48. A.M. Gorito, A.R. Ribeiro, C.M.R. Almeida, A.M.T. Silva, A review on the application of constructed wetlands for the removal of priority substances and contaminants of emerging concern listed in recently launched EU legislation, Environ. Pollut., 227 (2017) 428–443.