1. FAO/ECE, Legislation and Measures for the Solving of Environmental Problems Resulting from Agricultural Practices (With Particular Reference to Soil, Air and Water), Their Economic Consequences and Impact on Agrarian Structures and Farm Rationalization. United Nations Economic Commission for Europe (UNECE) and FAO, Agri/Agrarian Structures and Farm Rationalization, report No. 7, 1991.
  2. World Health Organization, Guidelines for Drinking-Water Quality, vol. 1, Recommendations, 2nd ed., WHO, Geneva, 1993.
  3. RIVM, The Environment in Europe: A Global Perspective, National Institute of Public Health and Environmental Protection (RIVM), Netherlands, 1992.
  4. S. Reichenberger, M. Bach, A. Skitschak, H.G. Frede, Mitigation strategies to reduce pesticide inputs into ground- and surface water and their effectiveness: a review, Sci. Total Environ., 384 (2007) 1–35.
  5. I.K. Konstantinou, T.A. Albanis, Photocatalytic transformation of pesticides in aqueous titanium dioxide suspensions using artificial and solar light: intermediates and degradation pathways, Appl. Catal., B, 42 (2003) 319–335.
  6. N. Vela, M. Calín, M.J. Yáñez-Gascón, I. Garrido, G. Pérez-Lucas, J. Fenoll, S. Navarro, Photocatalytic oxidation of six pesticides listed as endocrine disruptor chemicals from wastewater using two different TiO2 samples at pilot plant scale under sunlight irradiation, J. Photochem. Photobiol., A, 353 (2018) 271–278.
  7. S. Malato, P. Fernández-Ibáñez, M.I. Maldonado, J. Blanco, W. Gernjak, Decontamination and disinfection of water by solar photocatalysis: recent overview and trends, Catal. Today, 147 (2009) 1–59.
  8. S. Ahmed, M.G. Rasul, R. Brown, M.A. Hashib, Influence of parameters on the heterogeneous photocatalytic degradation of pesticides and phenolic contaminants in wastewater: a short review, J. Environ. Manage., 92 (2011) 311–330.
  9. I. Fechete, Y. Wang, C. Védrine, The past, present and future of heterogeneous catalysis, Catal. Today, 189 (2012) 2–27.
  10. R. Dewil, D. Mantzavinos, I. Poulios, M.A. Rodrigo, New perspectives for advanced oxidation processes, J. Environ Manage., 195 (2017) 93–99.
  11. M.M. Mahlambi, C.J. Ngila, B.B. Mamba, Recent developments in environmental photocatalytic degradation of organic pollutants: the case of titanium dioxide nanoparticles – a review, J. Nanomat., 2015 (2015) 1–29.
  12. A.O. Ibhadon, P. Fitzpatrick, Heterogeneous photocatalysis: recent advances and applications, Catalysts, 3 (2013) 189–218.
  13. R. Fagan, D.E. McCormack, D.D. Dionysiou, S.C. Pillai, A review of solar and visible light active TiO2 photocatalysis for treating bacteria, cyanotoxins and contaminants of emerging concern, Mater. Sci. Semicond. Process., 42 (2016) 2–14.
  14. Y. Nosaka, A. Nosaka, Understanding hydroxyl radical (OH) generation processes in photocatalysis, ACS Energy Lett., 1 (2016) 356–359.
  15. G.V. Buxton, C.L. Greenstock, W.P. Helman, A.B. Ross, Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (OH/O) in aqueous solution, J. Phys. Chem., 17 (1988) 513–886.
  16. G.P. Anipsitakis, D.D. Dionysiou, Radical Generation by the interaction of transition metals with common oxidants, Environ. Sci. Technol., 38 (2004) 3705–3712.
  17. P. Neta, R.E. Huie, A.B. Ross, Rate constants for reactions of inorganic radicals in aqueous solution, J. Phys. Chem. Ref. Data, 17 (1988) 1027–1284.
  18. M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis, Chem. Rev., 95 (1995) 69–96.
  19. M.I. Litter, Heterogeneous photocatalysis: transition metal ions in photocatalytic systems, Appl. Catal., B, 23 (1999) 89–114.
  20. N. Stamatis, M. Antonopoulou, I. Konstantinou, Photocatalytic degradation kinetics and mechanisms of fungicide tebuconazole in aqueous TiO2 suspensions, Catal. Today, 252 (2015) 93–99.
  21. P. Calza, S. Baudino, R. Aigotti, C. Baiocchi, P. Branca, E. Pelizzetti, High-performance liquid chromatographic/tandem mass spectrometric identification of the phototransformation products of tebuconazole on titanium dioxide, J. Mass Spectrom., 37 (2002) 566–576.
  22. T. De Hermann Prestes, D. De Oliveira Gibbon, M.A. Lansarin, C.C. Moro, Tebuconazole photocatalytic degradation kinetics, Quim. Nova, 33 (2010) 798–801.
  23. D. Papoulis, S. Komarneni, D. Panagiotaras, E. Stathatos, K.C. Christoforidis, M. Fernández-García, H. Li, S. Yin, T. Sato, H. Katsuki, Three-phase nanocomposites of two nanoclays and TiO2: Synthesis, characterization and photacatalytic activities, Appl. Catal., B, 147 (2014) 526–533.
  24. D. Papoulis, S. Komarneni, D. Panagiotaras, E. Stathatos, D. Toli, K.C. Christoforidis, M. Fernández-García, H. Li, S. Yin, T. Sato, H. Katsuki, Halloysite–TiO2 nanocomposites: synthesis, characterization and photocatalytic activity, Appl. Catal., B, 132–133 (2013) 416–422.
  25. D. Papoulis, S. Komarneni, D. Panagiotaras, A. Nikolopoulou, H. Li, S. Yin, T. Sato, H. Katsuki, Palygorskite–TiO2 nanocomposites: Part 1. Synthesis and characterization, Appl. Clay Sci., 83–84 (2013) 191–197.
  26. D. Papoulis, S. Komarneni, D. Panagiotaras, A. Nikolopoulou, K.C. Christoforidis, M. Fernández-García, H. Li, S. Yin, T. Sato, Palygorskite–TiO2 nanocomposites: Part 2. Photocatalytic activities in decomposing air and organic pollutants, Appl. Clay Sci., 83–84 (2013) 198–202.
  27. G. Shankaraiah, S. Poodari, D. Bhagawan, Vurimindi Himabindu, S. Vidyavathi, Degradation of antibiotic norfloxacin in aqueous solution using advanced oxidation processes (AOPs) – a comparative study, Desal. Wat. Treat., 57 (2016) 27804–27815.
  28. L. Sun, C. Sun, X. Sun, Solar photocatalytic decolorization of azo dyes in water and textile wastewater on N-(Cr3+, Fe3+) doped-TiO2 nanoparticle films: optimization of some operational parameters, Desal. Wat. Treat., 56 (2015) 346–355.
  29. A.D. Eaton, Standard Methods for the Examination of Water and Wastewater, 21st American Public Health Association, American Water Works Association, Water Environment Federation, APHA-AWWA-WEF, Washington, DC, 2005.
  30. V. Bekiari, P. Avramidis, Data quality in water analysis: validation of combustion-infrared and combustion-chemiluminescence methods for the simultaneous determination of Total Organic Carbon (TOC) and Total Nitrogen (TN), Int. J. Environ. Anal. Chem., 94 (2014) 65–76.