1. J.V. Alexander, J.W. Neely, E.A. Grulke, Effect of chemical functionalization on the mechanical properties of polypropylene hollow fiber membranes, J. Polym. Sci. Part B Polym. Phys., 52 (2014) 1366–1373.
  2. H.A. Balasubramanian-Rauckhorst, D.R. Lloyd, G.G. Lipscomb, Predicting extent of anisotropy in anisotropic hollow fiber membrane formation, J. Membr. Sci., 339 (2009) 250–260.
  3. W. Yave, R. Quijada, M. Ulbricht, R. Benavente, Syndiotactic polypropylene as potential material for the preparation of porous membranes via thermally induced phase separation (TIPS) process, Polymer, 46 (2005) 11582–11590.
  4. C.Y. Feng, K.C. Khulbe, T. Matsuura, A.F. Ismail, Recent progresses in polymeric hollow fiber membrane preparation, characterization and applications, Sep. Purif. Technol., 111 (2013) 43–71.
  5. B. Luo, Z. Li, J. Zhang, X. Wang, Formation of anisotropic microporous isotactic polypropylene (iPP) membrane via thermally induced phase separation, Desalination, 233 (2008) 19–31.
  6. H.Q. Liang, Q.Y. Wu, L.S. Wan, X.J. Huang, Z.K. Xu, Polar polymer membranes via thermally induced phase separation using a universal crystallizable diluent, J. Membr. Sci., 446 (2013) 482–491.
  7. M.E. Vanegas, R. Quijada, D. Serafini, Microporous membranes prepared via thermally induced phase separation from metallocenic syndiotactic polypropylenes, Polymer, 50 (2009) 2081–2086.
  8. H. Matsuyama, M.-m. Kim, D.R. Lloyd, Effect of extraction and drying on the structure of microporous polyethylene membranes prepared via thermally induced phase separation, J. Membr. Sci., 204 (2002) 413–419.
  9. Q.Y. Wu, L.S. Wan, Z.K. Xu, Structure and performance of polyacrylonitrile membranes prepared via thermally induced phase separation, J. Membr. Sci., 409–410 (2012) 355–364.
  10. Z. Gou, A.J. McHugh, A comparison of Newtonian and viscoelastic constitutive models for dry spinning of polymer fibers, J. Appl. Polym. Sci., 87 (2003) 2136–2145.
  11. N. Peng, N. Widjojo, P. Sukitpaneenit, M.M. Teoh, G.G. Lipscomb, T.-S. Chung, J.-Y. Lai, Evolution of polymeric hollow fibers as sustainable technologies: past, present, and future, Prog. Polym. Sci., 37 (2012) 1401–1424.
  12. T.S. Chung, Z.L. Xu, W. Lin, Fundamental understanding of the effect of air-gap distance on the fabrication of hollow fiber membranes, J. Appl. Polym. Sci., 72 (1999) 379–395.
  13. V. Simon, The temperature of fibers during air-gap wetspinning: cooling by convection and evaporation, Int. J. Heat Mass Trans., 37 (1994) 1133–1142.
  14. T.S. Chung, The limitations of using Flory-Huggins equation for the states of solutions during asymmetric hollow-fiber formation, J. Membr. Sci., 126 (1997) 19–34.
  15. J. Yin, N. Coutris, Y. Huang, Role of Marangoni instability in fabrication of axially and internally grooved hollow fiber membranes, Langmuir, 26 (2010) 16991–16999.
  16. H. Wu, L. Li, P. Li, Q. Yin, H. Chang, Effects of air-cooling on skin cells of hollow-fiber membranes prepared via thermally induced phase separation, Polym. Eng. Sci., 55 (2015) 1661–1670.
  17. Y. Mino, T. Ishigami, Y. Kagawa, H. Matsuyama, Threedimensional phase-field simulations of membrane porous structure formation by thermally induced phase separation in polymer solutions, J. Membr. Sci., 483 (2015) 104–111.
  18. H. Matsuyama, M. Yuasa, Y. Kitamura, M. Teramoto, D.R. Lloyd, Structure control of anisotropic and asymmetric polypropylene membrane prepared by thermally induced phase separation, J. Membr. Sci., 179 (2000) 91–100.
  19. N. Widjojo, T.S. Chung, Thickness and air gap dependence of macrovoid evolution in phase-inversion asymmetric hollow fiber membranes, Ind. Eng. Chem. Res., 45 (2006) 7618–7626.
  20. S.J. Shilton, Forced convection spinning of hollow fibre membranes: modelling of mass transfer in the dry gap, and prediction of active layer thickness and depth of orientation, Sep. Purif. Technol., 118 (2013) 620–626.
  21. V. Simon, Analysis of fiber formation during air-gap wet spinning, AIChE J., 41 (1995) 1281–1294.
  22. T.S. Chung, X. Hu, Effect of air-gap distance on the morphology and thermal properties of polyethersulfone hollow fibers, J. Appl. Polym. Sci., 66 (1997) 1067–1077.
  23. G.G. Lipscomb, The melt hollow fiber spinning process: steadystate behavior, sensitivity and stability, Polym. Adv. Technol., 5 (1994) 745–758.
  24. Z.S. Yang, Studies on Preparation and Morphology Controlling of iPP Hollow Fiber Microporous Membrane via Thermally Induced Phase Separation, Tianjin University, 2005.
  25. Y.K. Lin, G. Chen, J. Yang, X.L. Wang, Formation of isotactic polypropylene membranes with bicontinuous structure and good strength via thermally induced phase separation method, Desalination, 236 (2009) 8–15.
  26. S. Kase, T. Matsuo, Studies on melt spinning. II. Steady-state and transient solutions of fundamental equations compared with experimental results, J. Appl. Polym. Sci., 11 (1967) 251–287.
  27. O. Ishizuka, K. Koyama, Crystallization of running filament in melt spinning of polypropylene, Polymer, 18 (1977) 913–918.
  28. W.L. Chou, M.C. Yang, Effect of take-up speed on physical properties and permeation performance of cellulose acetate hollow fibers, J. Membr. Sci., 250 (2005) 259–267.
  29. H. Matsuyama, T. Maki, M. Teramoto, K. Asano, Effect of polypropylene molecular weight on porous membrane formation by thermally induced phase separation, J. Membr. Sci., 204 (2002) 323–328.
  30. O. Miyawaki, A. Saito, T. Matsuo, K. Nakamura, Activity and activity coefficient of water in aqueous solutions and their relationships with solution structure parameters, Biosci. Biotechnol. Biochem., 61 (1997) 466–469.