References

  1. World Health Organization, Pharmaceuticals in Drinking Water, 2012.
  2. T.A. Ternes, R. Roman Hirsch, J. Muller, K. Haberer, Methods for the determination of neutral drugs as well as betablockers and β2-sympathomimetics in aqueous matrices using GC/MS and LC/MS/MS, J. Anal. Chem., 362 (1998) 329–340.
  3. J. Aguado, J.M. Arsuaga, A. Arencibia, M. Lindo, V. Gascón, Aqueous heavy metals removal by adsorption on aminefunctionalized mesoporous silica, J. Hazard. Mater., 163 (2009) 213–221.
  4. S. Jodeh, F. Abdelwahab, N. Jaradat, I. Warad, W. Jodeh, Adsorption of diclofenac from aqueous solution using Cyclamen persicum tubers based activated carbon (CTAC), J. Assoc. Arab Univ. Basic Appl. Sci., 20 (2016) 32–38.
  5. G. Crini, P.M. Badot, Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: a review of recent literature, Prog. Polym. Sci., 33 (2008) 399–447.
  6. S.K. Parida,S. Dash, S. Patel, B.K. Mishra, Adsorption of organic molecules on silica surface, Adv. Colloid Interface Sci., 121 (2006) 77–110.
  7. K. Kuśmierek, M. Sankowska, A. Świątkowski, Kinetic and equilibrium studies of simultaneous adsorption of monochlorophenols and chlorophenoxy herbicides on activated carbon, Desal. Wat. Treat., 52 (2014) 178–183.
  8. H. Nourmoradi, A. Ghiasvand, Z. Noorimotlagh, Removal of methylene blue and acid orange 7 from aqueous solutions by activated carbon coated with zinc oxide (ZnO) nanoparticles: equilibrium, kinetic, and thermodynamic study, Desal. Wat. Treat., 55 (2015) 252–262.
  9. V. Srivastava, D. Gusain, C.Y. Sharma, Synthesis, characterization and application of zinc oxide nanoparticles (n-ZnO), Ceram. Int., 39 (2013) 9803–9808.
  10. R. Salehi, M. Arami, N.M. Mahmoodi, Novel biocompatible composite (chitosan–zinc oxide nanoparticle): preparation, characterization and dye adsorption properties, Colloids Surf., B, 80 (2010) 86–93.
  11. D. Dutta, D. Thakur, D. Bahadur, SnO2 quantum dots decorated silica nanoparticles for fast removal of cationic dye (methylene blue) from wastewater, Chem. Eng. J., 281 (2015) 482–490.
  12. Z.-x. Chen, X.Y. Jin, Z. Chen, M. Megharaj, R. Naidu, Removal of methyl orange from aqueous solution using bentonitesupported nanoscale zero-valent iron, J. Colloid Interface Sci., 363 (2011) 601–607.
  13. I.A. Rahman, V. Padavettan, Synthesis of silica nanoparticles by sol-gel: size-dependent properties, surface modification, and applications in silica-polymer nanocomposites-a review, J. Nanomater., 2012 (2012) 1–15.
  14. M.N. Ravi Kumar, M. Sameti, S.S. Mohapatra, X. Kong, R.F. Lockey, U. Bakowsky, G. Lindenblatt, H. Schmidt, C.M. Lehr, Cationic silica nanoparticles as gene carriers: synthesis, characterization and transfection efficiency in vitro and in vivo, J. Nanosci. Nanotechnol., 4 (2004) 876–881.
  15. T. Suteewong, H. Sai, J. Lee, M. Bradbury, T. Hyeon, M. Sol, S.M. Gruneref, U. Wiesne, Ordered mesoporous silica nanoparticles with and without embedded iron oxide nanoparticles: structure evolution during synthesis, J. Mater. Chem., 20 (2010) 7807–7814.
  16. T. Shahwan, C. Üzüm, A.E. Eroğlu, I. Lieberwirth, Synthesis and characterization of bentonite/iron nanoparticles and their application as adsorbent of cobalt ions, Appl. Clay Sci., 47 (2010) 257–262.
  17. C. Üzüm, T. Shahwan, A.E. Eroğlu, K.R. Hallam, T.B. Scott, I. Lieberwirth, Synthesis and characterization of kaolinitesupported zero-valent iron nanoparticles and their application for the removal of aqueous Cu2+ and Co2+ ions, Appl. Clay Sci., 43 (2009) 172–181.
  18. Y.C. Sharma, V. Srivastava, C.H. Weng, S.N. Upadhyay, Removal of Cr (VI) from wastewater by adsorption on iron nanoparticles, Can. J. Chem. Eng., 87 (2009) 921–929.
  19. Y.C. Sharma, V. Srivastava, Comparative studies of removal of Cr (VI) and Ni (II) from aqueous solutions by magnetic nanoparticles, J. Chem. Eng. Data, 56 (2010) 819–825.
  20. D. Gusain, F. Bux, Y.C. Sharma, Abatement of chromium by adsorption on nanocrystalline zirconia using response surface methodology, J. Mol. Liq., 197 (2014) 131–141.
  21. Y.C. Sharma, V. Srivastava, Separation of Ni (II) ions from aqueous solutions by magnetic nanoparticles, J. Chem. Eng. Data, 55 (2009) 1441–1442.
  22. V. Srivastava, Y.C. Sharma, Synthesis and characterization of Fe3O4@n-SiO2 nanoparticles from an agrowaste material and its application for the removal of Cr(VI) from aqueous solutions, Water Air Soil Pollut., 225 (2014) 1776.
  23. V. Srivastava, Y.C. Sharma, M. Sillanpää, Application of nanomagnesso ferrite (n-MgFe2O4) for the removal of Co2+ ions from synthetic wastewater: kinetic, equilibrium and thermodynamic studies, Appl. Surf. Sci., 338 (2015) 42–54.
  24. V. Srivastava, Y.C. Sharma, M. Sillanpää, Response surface methodological approach for the optimization of adsorption process in the removal of Cr (VI) ions by Cu2(OH)2CO3 nanoparticles, Appl. Surf. Sci., 326 (2015) 257–270.
  25. S. Sulaiman, T. Shahwan, Mefenamic acid stability and removal from wastewater using bentonite-supported nanoscale zerovalent iron and activated charcoal, Desal. Wat. Treat., 97 (2017) 175–183.
  26. B.G. Trewyn, I.I. Slowing, S. Giri, H.-T. Chen, V.S.-Y. Lin, Synthesis and functionalization of a mesoporous silica nanoparticle based on the sol–gel process and applications in controlled release, Acc. Chem. Res., 40 (2007) 846–853.
  27. X. Xin, Q. Wei, J. Yang, L. Yan, R. Feng, G. Chen, B. Du, H. Li, Highly efficient removal of heavy metal ions by aminefunctionalized mesoporous Fe3O4 nanoparticles, Chem. Eng. J., 184 (2012) 132–140.
  28. A. Heidari, H. Younesi, Z. Mehraban, Removal of Ni (II), Cd (II), and Pb (II) from a ternary aqueous solution by amino functionalized mesoporous and nano mesoporous silica, Chem. Eng. J., 153 (2009) 70–79.
  29. H. Yoshitake, T. Yokoi, T. Tatsumi, Adsorption of chromate and arsenate by amino-functionalized MCM-41 and SBA-1, Chem. Mater., 14 (2002) 4603–4610.
  30. S. Hamoudi, R. Saad, K. Belkacemi, Adsorptive removal of phosphate and nitrate anions from aqueous solutions using ammonium-functionalized mesoporous silica, Ind. Eng. Chem. Res., 46 (2007) 8806–8812.
  31. R. Saad, K. Belkacemi, S. Hamoudi, Adsorption of phosphate and nitrate anions on ammonium-functionalized MCM-48: effects of experimental conditions, J. Colloid. Interface Sci., 311 (2007) 375–381.
  32. X. Wang, P. Yifei, L. Muxin, L. Xiaoquan, D. Xinzhen, Highly efficient adsorption of heavy metals from wastewaters by graphene oxide-ordered mesoporous silica materials, J. Mater. Sci., 50 (2015) 2113–2121.
  33. A.C. Johnson, D.J. Monika, J.W. Richard, K. Klaus, K. Andreas, P.S. John, Do cytotoxic chemotherapy drugs discharged into rivers pose a risk to the environment and human health? An overview and UK case study, J. Hydrol., 348 (2008) 167–175.
  34. J. Fick, H. Söderström, R.H. Lindberg, C. Phan, M. Tysklind, D.G. Larsson, Contamination of surface, ground, and drinking water from pharmaceutical production, Environ. Toxicol. Chem., 28 (2009) 2522–2527.
  35. T. Pringsheim, W.J. Davenport, D. Dodick, Acute treatment and prevention of menstrually related migraine headache evidencebased review, Neurology, 70 (2008) 1555–1563.
  36. R.A. Moore, S. Derry, H.J. McQuay, Single dose oral mefenamic acid for acute postoperative pain in adults. Status and date, Cochrane Database Syst. Rev., 11 (2011) 1–28.
  37. P. Chen, F.L. Wang, K. Yao, J.S. Ma, F.H. Li, W.Y. Lv, G.G. Liu, Phototransformation of mefenamic acid induced by nitrite ions in water: mechanism, toxicity, and degradation pathways, Environ. Sci. Pollut. Res., 22 (2015) 12585–12596.
  38. M. Suwalsky, M. Manrique-Moreno, J. Howe, P. Garidel, K. Brandenburg, Molecular interactions of mefenamic acid with lipid bilayers and red blood cells, J. Braz. Chem. Soc., 22 (2011) 2243–2249.
  39. M.J. Hilton, K.V. Thomas, Determination of selected human pharmaceutical compounds in effluent and surface water samples by high-performance liquid chromatography–electrospray tandem mass spectrometry, J. Chromatogr. A, 1015 (2003) 129–141.
  40. B. Soulet, A. Tauxe, J. Tarradellas, Analysis of acidic drugs in Swiss wastewaters, Intern. J. Environ. Anal. Chem., 82 (2002) 659–667.
  41. X. Tang, T. Xiaosheng, S.G.C. Eugene, L. Ling, D. Jun, X. Junmin, Synthesis of ZnO nanoparticles with tunable emission colors and their cell labeling applications, J. Chem. Mater., 22 (2010) 3383–3388.
  42. M. Mazhdi, P. Hossein Khani, Structural characterization of ZnO and ZnO: Mn nanoparticles prepared by reverse micelle method, Intern. J. Nano Dimension, 2 (2012) 233–240.
  43. Q. Cai, Z.-S. Luo, W.-Q. Pang, Y.-W. Fan, X.-H. Chen, F.-Z. Cui, Dilute solution routes to various controllable morphologies of MCM-41 silica with a basic medium, Chem. Mater., 13 (2001) 258–263.
  44. T. Suteewong, H. Sai, J. Lee, M. Bradbury, T. Hyeon, S.M. Gurner, U. Wiesner, Ordered mesoporous silica nanoparticles with and without embedded iron oxide nanoparticles: structure evolution during synthesis, J. Mater. Chem., 20 (2010) 7807–7814.
  45. J.V.G. Tinio, V.G. Jessica, A. Simfroso, V.P. Dea Marie, T.C. Rolando Jr., Influence of OH ion concentration on the surface morphology of ZnO-SiO2 nanostructure, J. Nanotechnol., 1 (2015) 1–7 (Available at: https://doi.org/10.1155/2015/686021).
  46. H. Faghihian, H. Nourmoradi, M. Shokouhi, Removal of copper (II) and nickel (II) from aqueous media using silica aerogel modified with amino propyl triethoxysilane as an adsorbent: equilibrium, kinetic, and isotherms study, Desal. Wat. Treat., 52 (2014) 305–313.
  47. Y. Ho, G. McKay, A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents, Process Saf. Environ., 76 (1998) 332–340.
  48. Y.-S. Ho, G. McKay, Pseudo-second order model for sorption processes, Process Biochem., 34 (1999) 451–465.
  49. I. Langmuir, The constitution and fundamental properties of solids and liquids. Part I. Solids, J. Am. Chem. Soc., 38 (1916) 2221–2295.
  50. H. Freundlich, Over the adsorption in solution, J. Phys. Chem, 57 (1906) 1100–1107.
  51. F. Haghseresht, G. Lu, Adsorption characteristics of phenolic compounds onto coal-reject-derived adsorbents, Energy Fuels, 12 (1998) 1100–1107.
  52. K. Fytianos, E. Voudrias, E. Kokkalis, Sorption–desorption behaviour of 2, 4-dichlorophenol by marine sediments, Chemosphere, 40 (2000) 3–6.
  53. A.W. Adamson, A.P. Gast, Capillarity. Physical Chemistry of Surfaces, 6th ed., John Wiley & Sons Inc, New York, 1990, pp. 4–47.
  54. L. Cottet, C.A.P. Almeida, N. Naidek, M.F. Viante, M.C. Lopes, N.A. Debacher, Adsorption characteristics of montmorillonite clay modified with iron oxide with respect to methylene blue in aqueous media, Appl. Clay Sci., 95 (2014) 25–31.