1. A.N. Buckley, G.A. Hope, K.C. Lee, E.A. Petrovic, R. Woods, Adsorption of O-isopropyl-N-ethyl thionocarbamate on Cu sulfide ore minerals, Miner. Eng., 69 (2014) 120–132.
  2. R. Crozier, Flotation: Theory, Reagents and Ore Testing, Pergamon Press, Oxford, 1992, pp. 62–64.
  3. E. Chockalingam, S. Subramanian, K.A. Natarajan, Studies on biodegradation of organic flotation collectors using Bacillus polymyxa, Hydrometallurgy, 71 (2003) 249–256.
  4. S.H. Chen, W.Q. Gong, G.J. Mei, Q. Zhou, C.P. Bai, N. Xu, Primary biodegradation of sulfide mineral flotation collectors, Miner. Eng., 24 (2011) 953–955.
  5. X.M. Jie, H. Wang, Y. Chen, Removal of dianiline dithiophosphoric acid from wastewater by chelate precipitation, Desal. Wat. Treat., 57 (2016) 5100–5107.
  6. C.X. Chen, Research on Second Pollution of Mine Sulfur Beneficiation Reagents and Testing Measurements, Guilin University of Technology, Guangxi, China, 2008.
  7. S.H. Chen, W.Q. Gong, G.J. Mei, W.Y. Han, Anaerobic biodegradation of ethylthionocarbamate by the mixed bacteria under various electron acceptor conditions, Bioresour. Technol., 102 (2011) 10772–10775.
  8. C.D. Qi, X.T. Liu, J. Ma, C.Y. Lin, X.W. Li, H.J. Zhang, Activation of peroxymonosulfate by base: Implications for the degradation of organic pollutants, Chemosphere, 151 (2016) 280–288.
  9. A.R. Khataee, M. Fathinia, S.W. Joo, Simultaneous monitoring of photocatalysis of three pharmaceuticals by immobilized TiO2 nanoparticles: chemometric assessment, intermediates identification and ecotoxicological evaluation, Spectrochim. Acta, Part A, 112 (2013) 33–45.
  10. S. Fathinia, M. Fathinia, A.A. Rahmani, A. Khataee, Preparation of natural pyrite nanoparticles by high energy planetary ball milling as a nanocatalyst for heterogeneous Fenton process, Appl. Surf. Sci., 327 (2015) 190–200.
  11. C.D. Qi, X.T. Liu, C.Y. Lin, X.H. Zhang, J. Ma, H.B. Tan, W. Ye, Degradation of sulfamethoxazole by microwaveactivated persulfate: kinetics, mechanism and acute toxicity, Chem. Eng. J., 249 (2014) 6–14
  12. Y.J. Li, B.J. Zhang, X.L. Liu, Q. Zhao, H.M. Zhang, Y.C. Zhang, P. Ning, S.L. Tian, Ferrocene-catalyzed heterogeneous Fentonlike degradation mechanisms and pathways of antibiotics under simulated sunlight: a case study of sulfamethoxazole, J. Hazard. Mater., 353 (2018) 26–34.
  13. M. Bayat, M. Sohrabi, S.J. Royaee, Degradation of phenol by heterogeneous Fenton reaction using Fe/clinoptilolite, J. Ind. Eng. Chem., 18 (2012) 957–962.
  14. Y. Alegría, F. Liendo, O. Núñez, On the Fenton Degradation Mechanism. The Role of Oxalic Acid, Aekivoc, 10 (2003) 538.
  15. Hermosilla, Daphne, M. Cortijo, C.P. Huang, Optimizing the treatment of landfill leachate by conventional Fenton and photo-Fenton processes, Sci. Total Environ, 407 (2009) 3473–3481.
  16. A. Akyol, O.T. Can, E. Demirbas, M. Kobya, A comparative study of electrocoagulation and electro-Fenton for treatment of wastewater from liquid organic fertilizer plant, Sep. Purif. Technol., 112 (2013) 11–19.
  17. R. Rodríguez, J.J. Espada, M.I. Pariente, J.A. Melero, F. Martínez, R. Molina, Comparative life cycle assessment (LCA) study of heterogeneous and homogenous Fenton processes for the treatment of pharmaceutical wastewater, J. Cleaner Prod., 124 (2016) 21–29.
  18. Y.W. Xie, L.J. Chen, R. Liu, Oxidation of AOX and organic compounds in pharmaceutical wastewater in RSM-optimized- Fenton system, Chemosphere, 155 (2016) 217–224.
  19. P. Bautista, A.F. Mohedano, M.A. Gilarranz, J.A. Casas, J.J. Rodriguez, Application of Fenton oxidation to cosmetic wastewaters treatment, J. Hazard. Mater., 143 (2007) 128–134.
  20. M. Nurbas, S.B. Kutukcuoglu, Investigation of water decolonization by Fenton oxidation process in batch and continuous systems, Desal. Wat. Treat., 55 (2015) 3731–3736.
  21. N. Biglarijoo, S.A. Mirbagheri, M. Ehteshami, S.M. Ghaznavi, Optimization of Fenton process using response surface methodology and analytic hierarchy process for landfill leachate treatment, Process Saf. Environ., 104 (2016) 150–160.
  22. J.A.D.L. Perini, M. Perez-Moya, R.F.P. Nogueira, Photo-Fenton degradation kinetics of low ciprofloxacin concentration using different iron sources and pH, J. Photochem. Photobiol., A, 259 (2013) 53–58.
  23. J. Feng, X. Hu, P.L Yue, Effect of initial solution pH on the degradation of Orange II using clay-based Fe nanocomposites as heterogeneous photo-Fenton catalyst, Water Res., 40 (2006) 641–646.
  24. J.A. Zazo, G. Pliego, S. Blasco, J.A. Casas, J.J. Rodriguez, Intensification of the Fenton process by increasing the temperature, Ind. Eng. Chem. Res., 50 (2015) 866–870.
  25. E. Kan, S.G. Huling, Effects of temperature and acidic pretreatment on Fenton-driven oxidation of MTBE-spent granular activated carbon, Environ. Sci. Technol., 43 (2009) 1493.
  26. O.K. Ince, M. Ince, V. Yonten, A. Goksu, A food waste utilization study for removing lead(II) from drinks, Food Chem., 214 (2017) 637–643.
  27. C.C. Yoong, C.N. Ling, Y.Y. Aniza, R.A. Talib, L.C. Lim, Optimization of total phenolic content extracted from Garcinia mangostana Linn. Hull using response surface methodology versus artificial neural network, Ind. Crop. Prod., 40 (2012) 247–253.
  28. T. Xu, Y. Liu, F. Ge, L. Liu, Y. Ouyang, Application of response surface methodology for optimization of azocarmine B removal by heterogeneous photo-Fenton process using hydroxyiron– aluminum pillared bentonite, Appl. Surf. Sci., 280 (2013) 926–932.
  29. G. Chen, J. Chen, C. Srinivasakannan, J.H. Peng, Application of response surface methodology for optimization of the synthesis of synthetic rutile from titania slag, Appl. Surf. Sci., 258 (2012) 3068–3073
  30. M.M. Song, C. Branford-White, H.L. Nie, L.M. Zhu, Optimization of adsorption conditions of BSA on thermosensitive magnetic composite particles using response surface methodology, Colloids Surf., B, 84 (2011) 477–483.
  31. A.A. Salarian, Z. Hami, N. Mirzaei, S.M. Mohseni, A. Asadi, H. Bahrami, M. Vosoughi, A. Alinejad, M.R. Zare, N-doped TiO2 nanosheets for photocatalytic degradation and mineralization of diazinon under simulated solar irradiation: optimization and modeling using a response surface methodology, J. Mol. Liq., 220 (2016) 183–191.
  32. Z.M. Shaykhi, A.A.L. Zinatizadeh, Statistical modeling of photocatalytic degradation of synthetic amoxicillin wastewater (SAW) in an immobilized TiO2 photocatalytic reactor using response surface methodology (RSM), J. Taiwan Inst. Chem. Eng., 45 (2014) 1717–1726.
  33. A.V. Schenone, L.O. Conte, M.A. Botta, O.M. Alfano, Modeling and optimization of photo-Fenton degradation of 2,4-D using ferrioxalate complex and response surface methodology (RSM), J. Environ. Manage., 155 (2015) 177–183.
  34. M. Fayazi, D. Afzali, M.A. Taher, A. Mostafavi, V.K. Gupta, Removal of Safranin dye from aqueous solution using magnetic mesoporous clay: optimization study, J. Mol. Liq., 212 (2015) 675–685.
  35. A. Eslami, A. Asadi, M. Meserghani, H. Bahrami, Optimization of sonochemical degradation of amoxicillin by sulfate radicals in aqueous solution using response surface methodology (RSM), J. Mol. Liq., 222 (2016) 739–744.
  36. B.G. Kwon, D.S. Lee, N. Kang, J. Yoon, Characteristics of p-chlorophenol oxidation by Fenton’s reagent, Water Res., 33 (1999) 2110–2118.
  37. W.Z. Tang, C.P. Huang, 2,4-Dichlorophenol oxidation kinetics by Fenton’s reagent, Environ. Technol., 17 (1996) 1371–1378.
  38. J.J. Pignatello, Dark and photoassisted iron(3+)-catalyzed degradation of chlorophenoxy herbicides by hydrogen peroxide, Environ. Sci. Technol., 26 (1992) 944–951.
  39. C. Höfl, G. Sigl, O. Specht, I. Wurdack, D. Wabner, Oxidative degradation of AOX and COD by different advanced oxidation processes. A comparative study with two samples of a pharmaceutical wastewater, Water Sci. Technol., 35 (1997) 257–264.
  40. M.A. Wei, Fundamental Research on Flotation Separation of Chalcopyrite and Galena, College of Resources and Civil Engineering, Northeastern University, Shenyang, China, 2008.
  41. Y.Q. Sun, Y.Z. Hu, Analytical Chemistry, 2nd ed., Science Press, Beijing, China, 2006, p. 271.
  42. D.H. Liu, C. Ma, G.H. Gu, C.Q. Wang, X. Chen, Removal of isopropyl ethylthionocarbamate from aqueous solution by oxidation, Desal. Wat. Treat., 72 (2017) 228–234.
  43. R. Chen, J. Pignatello, Role of quinone intermediates as electron shuttles in Fenton and photo assisted Fenton oxidations of aromatic compounds, Environ. Sci. Technol., 31 (1997) 2399–2406.
  44. C. Liang, C.P. Liang, C.C. Chen, pH dependence of persulfate activation by EDTA/Fe(III) for degradation of trichloroethylene, J. Contam. Hydrol., 106 (2009) 173–182.
  45. S. Rodriguez, L. Vasquez, D. Costa, A. Romero, A. Santos, Oxidation of Orange G by persulfate activated by Fe(II), Fe(III) and zero valent iron (ZVI), Chemosphere, 101 (2014) 86–92.