References

  1. B. Fatih, World Energy Outlook 2015, International Energy Agency, 2015.
  2. L. Doman, EIA projects 48% increase in world energy consumption by 2040, in, Today in Energy, U.S. Energy Information Administration (EIA), 2016.
  3. BP Energy Outlook, in, 2017.
  4. P.S. Nigam, A. Singh, Production of liquid biofuels from renewable resources, Prog. Energy Combust. Sci., 37 (2011) 52–68.
  5. M. Tutt, T. Kikas, J. Olt, Influence of different pretreatment methods on bioethanol production from wheat straw, Agron. Res., 10 (2012) 209–276.
  6. Y. Chisti, Biodiesel from micro algae, Biotechnol. Adv., 25 (2007) 294–306.
  7. R.P. John, G. Anisha, K.M. Nampoothiri, A. Pandey, Micro and macroalgal biomass: a renewable source for bioethanol, Bioresour. Technol., 102 (2011) 186–193.
  8. M. Danquah, B. Liu, R. Harun, Analysis of process configurations for bioethanol production from micro algal biomass, in: Progress in Biomass and Bioenergy Production, InTech, 2011.
  9. S.-H. Ho, C.-Y. Chen, J.-S. Chang, Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous micro alga Scenedesmus obliquus CNW-N, Bioresour. Technol., 113 (2012) 244–252.
  10. L. Brennan, P. Owende, Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products, Renew. Sust. Energ. Rev., 14 (2010) 557–577.
  11. J.-S. Deschênes, A. Boudreau, R. Tremblay, Mixotrophic production of micro algae in pilot-scale photo bioreactors: Practicability and process considerations, Algal Res., 10 (2015) 80–86.
  12. R.L. White, R.A. Ryan, Long-term cultivation of algae in open-raceway ponds: lessons from the field, Ind. Biotechnol., 11 (2015) 213–220.
  13. W.J. Oswald, H. Gotaas, H.F. Ludwig, V. Lynch, Algae symbiosis in oxidation ponds: III. Photosynthetic oxygenation, Sewage Ind. Waste, (1953) 692–705.
  14. R. Boonchai, G.T. Seo, C.Y. Seong, Micro algae photo bioreactor for nitrogen and phosphorus removal from wastewater of sewage treatment plant, Int. J. Biosci. Biochem. Bioinforma., 2 (2012) 407.
  15. W.J. Oswald, H.B. Gotaas, Photosynthesis in sewage treatment, Trans. Am. Soc. Civ. Eng., 122 (1957) 73–105.
  16. J. Kim, B.P. Lingaraju, R. Rheaume, J.-Y. Lee, K.F. Siddiqui, Removal of ammonia from wastewater effluent by Chlorella vulgaris, Tsinghua Sci. Technol., 15 (2010) 391–396.
  17. W. Zhou, Y. Li, M. Min, B. Hu, P. Chen, R. Ruan, Local bioprospecting for high-lipid producing microalgal strains to be grown on concentrated municipal wastewater for biofuel production, Bioresour. Technol., 102 (2011) 6909–6919.
  18. P. Singh, S.K. Gupta, A. Guldhe, I. Rawat, F. Bux, Microalgae Isolation and Basic Culturing Techniques, in: Handbook of Marine Microalgae, Elsevier, 2015, pp. 43–54.
  19. J.U. Fangel, P. Ulvskov, J.P. Knox, M.D. Mikkelsen, J. Harholt, Z.A. Popper, W.G.T. Willats, Cell wall evolution and diversity, Front. Plant Sci., 3 (2012) 152.
  20. Y.A. Castro, J.T. Ellis, C.D. Miller, R.C. Sims, Optimization of wastewater micro algae saccharification using dilute acid hydrolysis for acetone, butanol, and ethanol fermentation, Appl. Energy, 140 (2015) 14–19.
  21. F.M. Gírio, C. Fonseca, F. Carvalheiro, L.C. Duarte, S. Marques, R. Bogel-Łukasik, Hemicelluloses for fuel ethanol: a review, Bioresour. Technol., 101 (2010) 4775–4800.
  22. S.W. Kim, C.-H. Hong, S.-W. Jeon, H.-J. Shin, High-yield production of biosugars from Gracilaria verrucosa by acid and enzymatic hydrolysis processes, Bioresour. Technol., 196 (2015) 634–641.
  23. C. Ofori-Boateng, K.T. Lee, Ultrasonic-assisted simultaneous saccharification and fermentation of pretreated oil palm fronds for sustainable bioethanol production, Fuel, 119 (2014) 285–291.
  24. B.D. Kaushik, Laboratory methods for blue-green algae, Associated Publishing Company, New Delhi, 1987.
  25. R. Stanier, R. Kunisawa, M. Mandel, G. Cohen-Bazire, Purification and properties of unicellular blue-green algae (order Chroococcales), Bacteriol. Rev., 35 (1971) 171.
  26. S.-H. Ho, S.-W. Huang, C.-Y. Chen, T. Hasunuma, A. Kondo, J.-S. Chang, Bioethanol production using carbohydrate-rich microalgae biomass as feedstock, Bioresour. Technol., 135 (2013) 191–198.
  27. R. Harun, M.K. Danquah, Influence of acid pre-treatment on microalgal biomass for bioethanol production, Process. Biochem., 46 (2011) 304–309.
  28. R. Harun, M.K. Danquah, G.M. Forde, Micro algal biomass as a fermentation feedstock for bioethanol production, J. Chem. Technol. Biot., 85 (2010) 199–203.
  29. G. Moxley, Y.-H.P. Zhang, More accurate determination of acid-labile carbohydrates in lignocellulose by modified quantitative saccharification, Energy Fuels., 21 (2007) 3684–3688.
  30. S. Taylor, Marine Medicinal Foods: Implications and Applications, Macro and Microalgae, Academic Press, 2011.
  31. X. Han, Y.S. Wong, M.H. Wong, N.F.Y. Tam, Biosorption and bioreduction of Cr (VI) by a micro algal isolate, Chlorella miniata, J. Hazard. Mater., 146 (2007) 65–72.
  32. A.D. Kshirsagar, Bioremediation of wastewater by using microalgae: an experimental study, Int. J. Life Sci. Biotechnol. Pharma., 2 (2013) 339–346.
  33. M. Garrett, M. Allen, Photosynthetic purification of the liquid phase of animal slurry, Environ. Poll., 10 (1976) 127–139.
  34. E.J. Olguín, S. Galicia, G. Mercado, T. Pérez, Annual productivity of Spirulina (Arthrospira) and nutrient removal in a pig wastewater recycling process under tropical conditions, J. Appl. Phycol., 15 (2003) 249–257.
  35. P. He, B. Mao, F. Lü, L. Shao, D. Lee, J. Chang, The combined effect of bacteria and Chlorella vulgaris on the treatment of municipal waste waters, Bioresour. Technol., 146 (2013) 562– 568.
  36. G. Dragone, B.D. Fernandes, A.P. Abreu, A.A. Vicente, J.A. Teixeira, Nutrient limitation as a strategy for increasing starch accumulation in micro algae, Appl. Energy, 88 (2011) 3331– 3335.
  37. L. Korzen, I.N. Pulidindi, A. Israel, A. Abelson, A. Gedanken, Single step production of bioethanol from the seaweed Ulva rigida using sonication, RSC Adv., 5 (2015) 16223–16229.
  38. S.-H. Ho, A. Kondo, T. Hasunuma, J.-S. Chang, Engineering strategies for improving the CO2 fixation and carbohydrate productivity of Scenedesmus obliquus CNW-N used for bioethanol fermentation, Bioresour. Technol., 143 (2013) 163–171.
  39. J. Miranda, P.C. Passarinho, L. Gouveia, Pre-treatment optimization of Scenedesmus obliquus microalga for bioethanol production, Bioresour. Technol., 104 (2012) 342–348.
  40. R. Harun, W. Jason, T. Cherrington, M.K. Danquah, Exploring alkaline pre-treatment of microalgal biomass for bioethanol production, Appl. Energy, 88 (2011) 3464–3467.
  41. K.H. Kim, I.S. Choi, H.M. Kim, S.G. Wi, H.-J. Bae, Bioethanol production from the nutrient stress-induced microalga Chlorella vulgaris by enzymatic hydrolysis and immobilized yeast fermentation, Bioresour. Technol., 153 (2014) 47–54.
  42. O.K. Lee, Y.-K. Oh, E.Y. Lee, Bioethanol production from carbohydrate-enriched residual biomass obtained after lipid extraction of Chlorella sp. KR-1, Bioresour. Technol., 196 (2015) 22–27.
  43. E.B. Sydney, W. Sturm, J.C. de Carvalho, V. Thomaz-Soccol, C. Larroche, A. Pandey, C.R. Soccol, Potential carbon dioxide fixation by industrially important microalgae, Bioresour. Technol., 101 (2010) 5892–5896.