1. A. Kuleyin, Removal of phenol and 4-chlorophenol by surfactant- modified natural zeolite, J. Hazard. Mater., 144 (2007) 307–315.
  2. X. Liu, J.H. Fan, L.M. Ma, Elimination of 4-chlorophenol in aqueous solution by the bimetallic Al-Fe/O2 at normal temperature and pressure, Chem. Eng. J., 236 (2014) 274–284.
  3. S.H. Lin, R.S. Juang, Adsorption of phenol and its derivatives from water using synthetic resins and low-cost natural adsorbents: A review, J. Environ. Manage., 90 (2009) 1336–1349.
  4. H. Yuan, Q.L. You, L.J. Song, G.Y. Liao, H. Xia, D.S. Wang, Preparation of carbon nanotubes/porous polyimide composites for effective adsorption of 2, 4-dichlorophenol, RSC Adv., 6 (2016) 95825–95835.
  5. W.P. Cheng, W. Gao, X. Cui, J.H. Ma, R.F. Li, Phenol adsorption equilibrium and kinetics on zeolite X/activated carbon composite, J. Taiwan. Inst. Chem. Eng., 62 (2016) 192–198.
  6. C. Scully, G. Collins, V. O’Flaherty, Anaerobic biological treatment of phenol at 9.5–15 degrees C in an expanded granular sludge bed (EGSB)-based bioreactor, Water Res., 40 (2006) 3737–3744.
  7. G.B. Seetharam, B.A. Saville, Degradation of phenol using tyrosinase immobilized on siliceous supports, Water Res., 37 (2003) 436–440.
  8. K. Lin, J. Pan, Y. Chen, R. Cheng, X. Xu, Study the adsorption of phenol from aqueous solution on hydroxyapatite nanopowders, J. Hazard. Mater., 161 (2009) 231–240.
  9. Y. Park, G.A. Ayoko, E. Horváth, R. Kurdi, J. Kristof, R.L. Frosta, Structural characterisation and environmental application of organoclays for the removal of phenolic compounds, J. Colloid Interface Sci., 393 (2013) 319–334.
  10. S.K. Nadavala, K. Swayampakula, V.M. Boddu, K. Abburi, Biosorption of phenol and o-chlorophenol from aqueous solutions on to chitosan-calcium alginate blended beads, J. Hazard. Mater., 162 (2009) 482–489.
  11. N.S. Kumar, K. Min, Phenolic compounds biosorption onto Schizophyllum commune fungus: FTIR analysis, kinetics and adsorption isotherms modeling, Chem. Eng. J., 168 (2011) 562– 571.
  12. P.T. Huong, B.K. Lee, J. Kim, Improved removal of 2-chlorophenol by a synthesized Cu-nano zeolite, Process Saf. Environ., 100 (2016) 272–280.
  13. T.A. Saleh, S.O. Adio, M. Asif, H. Dafalla, Statistical analysis of phenols adsorption on diethylenetriamine-modified activated carbon, J. Clean. Prod., 182 (2018) 960–968.
  14. N.S. Kumar, A.S. Reddy, V.M. Boddu, A. Krishnaiah, Development of chitosan-alginate based biosorbent for the removal of p-chlorophenol from aqueous medium, Toxicol. Environ. Chem., 91 (2009) 1035–1054.
  15. S.K. Nadavala, H.C. Man, H.S. Woo, Biosorption of phenolic compounds from aqueous solutions using pine (Pinus densiflora Sieb) bark powder, BioResources, 9 (2014) 5155–5174.
  16. N.S. Kumar, K. Min, Removal of phenolic compounds from aqueous solutions by biosorption onto acacia leucocephala bark powder: equilibrium and kinetic studies, J. Chil. Chem. Soc., 56(1) (2011) 539–545.
  17. Y. Zhou, L. Tang, G. Yang, G. Zeng, Y. Deng, B. Huang, Y. Cai, J. Tang, J. Wang, Y. Wu, Phosphorus-doped ordered mesoporous carbons embedded with Pd/Fe Bimetal Nanoparticles for the dechlorination of 2, 4−dichlorophenol, Catal. Sci. Technol., 6 (2016) 1930–1939.
  18. M.Z. Momčilović, M.S. Ranđelović, A.R. Zarubica, A.E. Onjia, M. Kokunešoski, B.Z. Matović, SBA-15 templated mesoporous carbons for 2, 4-dichlorophenoxyacetic acid removal, Chem. Eng. J., 220 (2013) 276–283.
  19. W. Teng, Z. Wu, J. Fan, H. Chen, D. Feng, Y. Lv, J. Wang, A. Asiri, D. Zhao, Ordered mesoporous carbons and their corresponding column for highly efficient removal of microcystin- LR, Energ. Environ. Sci., 6 (2013) 2765–2776.
  20. A. Chen, Y. Li, Y. Yu, Y. Li, L. Zhang, H. Lv, L. Liu, Mesoporous carbonaceous materials prepared from used cigarette filters for efficient phenol adsorption and CO2 capture, Rsc Adv., 5 (2015) 107299–107306.
  21. J. Fan, X. Ran, Y. Ren, Ordered mesoporous carbonaceous materials with tunable surface property for enrichment of hexachlorobenzene, Langmuir, 32 (2016) 9922–9929.
  22. J. Yang, Y. Jin, X. Yu, Q. Yue, High surface area ordered mesoporous carbons from waste polyester: effective adsorbent for organic pollutants from aqueous solution, J. Sol-Gel Sci. Technol., 83 (2017) 413–421.
  23. G. Yang, L. Tang, G. Zeng, Y. Cai, J. Tang, Y. Pang, Y. Zhou, Y. Liu, J. Wang, S. Zhang, W. Xiong, Simultaneous removal of lead and phenol contamination from water by nitrogen-functionalized magnetic ordered mesoporous carbon, Chem. Eng. J., 259 (2015) 854–864.
  24. A. Chen, Y. Li, Y. Yu, Y. Li, K. Xia, Y. Wang, S. Li, L. Zhang, Synthesis of hollow mesoporous carbon spheres via “dissolution capture” method for effective phenol adsorption, Carbon, 103 (2016) 157–162.
  25. L. Zuo, W. Song, T. Shi, C. Lv, J. Yao, J. Liu, Y. Weng, Adsorption of aniline on template-synthesized porous carbons, Microporous Mesoporous Mater., 200 (2014) 174–181.
  26. W. Xin, Y. Song, Mesoporous carbons: recent advances in synthesis and typical applications, J. Cheminform., 5 (2015) 83239– 83285.
  27. A.B. Fuertes, G. Lota, T.A. Centeno, E. Frackowiak, Templated mesoporous carbons for supercapacitor application, Electrochim. Acta., 50 (2005) 2799–2805.
  28. K.S. Lakhi, D.H. Park, K. Al-Bahily, W. Cha, B. Viswanathan, J.H. Choy, A. Vinu, Mesoporous carbon nitrides: synthesis, functionalization, and applications, Chem. Soc. Rev., 46 (2017) 72–101.
  29. H. Cheng, H. Xue, G. Zhao, Preparation, characterization, and properties of graphene-based composite aerogels via in situ polymerization and three-dimensional self assembly from graphene oxide solution, RSC Adv., 6 (2016) 78538–78547.
  30. G. Wang, S. Chen, X. Quan, H. Yu, Y. Zhang, Enhanced activation of peroxymonosulfate by nitrogen doped porous carbon for effective removal of organic pollutants, Carbon, 115 (2017) 730–739.
  31. J. Gao, X. Wang, Q. Zhao, Y. Zhang, J. Liu, Synthesis and supercapacitive performance of three-dimensional cubic-ordered mesoporous carbons, Electrochim. Acta., 163 (2015) 223–231.
  32. H. Ding, X. Shen, C. Chen, X. Zhang, Molecular dynamics simulations of simple aromatic compounds adsorption on single-walled carbon nanotubes, RSC Adv., 6 (2016) 80972– 80980.
  33. K. Babaeivelni, A.P. Khodadoust, Adsorption of fluoride onto crystalline titanium dioxide: Effect of pH, ionic strength, and co-existing ions, J. Colloid Interface Sci., 394 (2013) 419–427.
  34. J.C. Lazo-Cannata, A. Nieto-Marquez, A. Jacoby, A.L. Paredes- Doig, A. Romero, M.R. Sun-Kou, J. Valverde, Adsorption of phenol and nitrophenols by carbon nanospheres: Effect of pH and ionic strength, Sep. Purif. Technol., 80 (2011) 217–224.
  35. L. Zhu, A. Baoliang Chen, X. Shen, Sorption of phenol, P-nitrophenol, and aniline to dual-cation organobentonites from water, Environ. Sci. Technol., 34 (2000) 16–19.
  36. L.S. Guinesi, E.T. Gomes Cavalheiro, Influence of some reactional parameters on the substitution degree of biopolymeric Schiff bases prepared from chitosan and salicylaldehyde, Carbohydr. Polym., 65 (2006) 557–561.
  37. M. Kragulj, J. Trickovi, A. Kukovecz, B. Jovic, J. Molnar, S. Roncevi, Z. Konya, B. Dalmacija, Adsorption of chlorinated phenols on multiwalled carbon nanotubes, RSC Adv., 5 (2015) 24920–24929.
  38. J. Li, X. Meng, C. Hu, J. Du, Adsorption of phenol, p-chlorophenol and p-nitrophenol onto functional chitosan, Bioresour. Technol., 100 (2009) 1168–1173.
  39. C. Moreno-Castilla, Adsorption of organic molecules from aqueous solutions on carbon materials, Carbon, 42 (2004) 83–94.
  40. Q. Lu, G.A. Sorial, The effect of functional groups on oligomerization of phenolics on activated carbon, J. Hazard. Mater., 148 (2007) 436–445.
  41. Q. Liu, T. Zheng, P. Wang, J. Jiang, N. Li, Adsorption isotherm, kinetic and mechanism studies of some substituted phenols on activated carbon fibers, Chem. Eng. J., 157 (2010) 348–356.
  42. M.D. Víctor-Ortega, J.M. Ochando-Pulido, A. Martínez-Férez, Phenols removal from industrial effluents through novel polymeric resins: Kinetics and equilibrium studies, Sep. Purif. Technol., 160 (2016) 136–144.
  43. X. Yang, M. Guo, Y. Wu, Q. Wu, R. Zhang, Removal of emulsified oil from water by fruiting bodies of macro-fungus, Plos One, 9 (2014) 162–195.
  44. N. Yeddou, A. Bensmaili, Kinetic models for the sorption of dye from aqueous solution by clay-wood sawdust mixture, Desalination, 185 (2005) 499–508.
  45. W.J. Weber, J.C. Morris, Kinetics of adsorption on carbon from solution, J. Sanit. Eng. Div., 1 (1963) 1–2.
  46. S. Altenor, B. Carene, E. Emmanuel, J. Lambert, J.-J. Ehrhardt, S. Gaspard, Adsorption studies of methylene blue and phenol onto vetiver roots activated carbon prepared by chemical activation, J. Hazard. Mater., 165 (2009) 1029–1039.
  47. M. Sharma, R.K. Vyas, K. Singh, Theoretical and experimental analysis of reactive adsorption in a packed bed: parallel and branched pore-diffusion model approach, Ind. Eng. Chem. Res., 55 (2016) 5945–5954.
  48. C.T. Hsieh, H. Teng, Influence of mesopore volume and adsorbate size on adsorption capacities of activated carbons in aqueous solutions, Carbon, 38 (2000) 863–869.
  49. I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Chem. Phys., 40 (1918) 1362–1403.
  50. M.D. Levan, T. Vermeulen, Binary Langmuir and Freundlich isotherms for ideal adsorbed solutions, J. Phys. Chem., 85 (1981) 3247–3250.
  51. V. Gianotti, M. Benzi, G. Croce, P. Frascarolo, F. Gosetti, E. Mazzucco, M. Bottaro, M. Gennaro, The use of clays to sequestrate organic pollutants: Leaching experiments, Chemosphere, 73 (2008) 1731–1736.
  52. C. Aharoni, M. Ungarish, Kinetics of activated chemisorption. Part 2.-Theoretical models, J. Chem. Soc. Faraday Trans., 73 (1977) 456–464.
  53. Z. Noorimotlagh, R.D.C. Soltani, A.R. Khataee, S. Shahriyar, H. Nourmoradi, Adsorption of a textile dye in aqueous phase using mesoporous activated carbon prepared from Iranian milk vetch, J. Taiwan. Inst. Chem. Eng., 45 (2014) 1783–1791.
  54. Z. Luo, M. Gao, S. Yang, Q. Yang, Adsorption of phenols on reduced-charge montmorillonites modified by bispyridinium dibromides: Mechanism, kinetics and thermodynamics studies, Colloids Surf. A, 482 (2015) 222–230.
  55. P.S. Nayak, B.K, Singh, Removal of phenol from aqueous solutions by sorption on low cost clay, Desalination, 207 (2007) 71–79.
  56. A.A. Khan, R.P. Singh, Adsorption thermodynamics of carbofuran on Sn (IV) arsenosilicate in H+, Na+ and Ca2+ forms, Colloids Surf., 24 (1987) 33–42.
  57. L. Zhu, X. Ren, S. Yu, Use of cetyltrimethyl ammonium bromide-bentonite to remove organic contaminants of varying polar character from water, Environ. Sci. Technol., 32 (1998) 3374–3378.
  58. Y. Liu, Is the free energy change of adsorption correctly calculated? J. Chem. Eng. Data, 54 (2009) 1981–1985.
  59. B. Pardo, N. Ferrer, J. Sempere, R. Gonzalez-Olmos, A key parameter on the adsorption of diluted aniline solutions with activated carbons: The surface oxygen content, Chemosphere, 162 (2016) 181–188.
  60. C.Y. Yin, M.F. Ng, B.M. Goh, M. Saunders, N. Hill, Z.T. Jiang, J. Balach, M. El-Harbawi, Probing the interactions of phenol with oxygenated functional groups on curved fullerene-like sheets in activated carbon, Phys. Chem. Chem. Phys. Pccp., 18 (2016) 3700–3705.
  61. E. Lorenc-Grabowska, M.A. Diez, G. Gryglewicz, Influence of pore size distribution on the adsorption of phenol on PETbased activated carbons, J. Colloid Interface Sci., 469 (2016) 205–212.
  62. A. Sarswat, D. Mohan, Sustainable development of coconut shell activated carbon (CSAC) and magnetic coconut shell activated carbon (MCSAC) for phenol (2-nitrophenol) removal, RSC Adv., 6 (2016) 85390–85410.