1. H.W. Tian, M. Liu, W.T. Zheng, Constructing 2D graphitic carbon nitride nanosheets/layered MoS2/graphene ternary nanojunction with enhanced photocatalytic activity, Appl. Catal. B: Environ., 225 (2018) 468–476.
  2. Y.T. Xiao, G.H. Tian, Y.J. Chen, X. Zhang, H.Y. Fu, H.G. Fu, Exceptional visible-light photoelectro catalytic activity of In2O3/In2S3/CdS ternary stereoscopic porous heterostructure film for the degradation of persistent 4-fluoro-3-methylphenol, Appl. Catal. B: Environ., 225 (2018) 477–486.
  3. V. Vaianoa, M. Matarangolo, J.J. Murcia, H. Rojas, J.A. Navío, M.C. Hidalgo, Enhanced photocatalytic removal of phenol from aqueous solutions using ZnO modified with Ag, Appl. Catal. B: Environ., 225 (2018) 197–206.
  4. Z. Song, X.L. Dong, N. Wang, L.H. Zhu, Z.H. Luo, J.D. Fang, C.H. Xiong, Efficient photocatalytic defluorination of perfluorooctanoic acid over BiOCl nanosheets via a hole direct oxidation mechanism, Chem. Eng. J., 317 (2017) 925–934.
  5. M. Sansotera, F. Persico, C. Pirola, W. Navarrini, A.D. Michele, C.L. Bianchia, Decomposition of perfluorooctanoic acid photocatalyzed by titanium dioxide: Chemical modification of the catalyst surface induced by fluoride ions, Appl. Catal. B: Environ., 148–149 (2014) 29–35.
  6. J. Zhong, J. Li, S. Huang, C. Cheng, W. Yuan, M. Li, J. Ding, Improved solar-driven photocatalytic performance of Ag2CO3/(BiO)2CO3 prepared in-situ, Mater. Res. Bull., 77 (2016) 185–189.
  7. J. Chen, J. Zhong, J. Li, S. Huang, Z. Xiang, M. Li, Effects of the molar ratio on the photo-generated charge separation behaviors and photocatalytic activities of (BiO)2CO3-BiOBr composites, Solid State Sci., 60 (2016) 11–16.
  8. Y. Si, J. Li, J. Zhong, J. Zeng, S. Huang, W. Yuan, M. Li, J. Ding, Charge separation properties of (BiO)2CO3/BiOI heterostructures with enhanced solar-driven photocatalytic activity, Curr. Appl. Phys., 16 (2016) 240–244.
  9. Q. Yang, J. Li, J. Zhong, C. Cheng, Z. Xiang, J. Chen, Enhanced solar photocatalytic performance of (BiO)2CO3 prepared with the assistance of ionic liquid, Mater. Lett., 192 (2017) 157–160.
  10. Y. Zheng, F. Duan, M.Q. Chen, Y. Xie, Synthetic Bi2O2CO3 nanostructures: novel photocatalyst with controlled special surface exposed, J. Mol. Catal. A: Chem., 317 (2010) 34–40.
  11. H.W. Huang, Y. He, Z.S. Lin, L. Kang, Y.H. Zhang, Two novel Bi-based borate photocatalysts: crystal structure, electronic structure, photoelectro chemical properties, and photocatalytic activity under simulated solar light irradiation, J. Phys. Chem. C., 117 (2013) 22986–22994.
  12. H.W. Huang, X.W. Li, J.J. Wang, F. Dong, P.K. Chu, T.R. Zhang, Y.H. Zhang, Anionic group self-doping as a promising strategy: band-gap engineering and multi-functional applications of high-performance CO32– doped Bi2O2CO3, ACS Catal., 5 (2015) 4094–4103.
  13. T. Xiong, X.A. Dong, H.W. Huang, W.L. Cen, Y.X. Zhang, F. Dong, Single precursor mediated-synthesis of Bi semimetal deposited N-doped (BiO)2CO3 superstructures for highly promoted photcatalysis, ACS Sustain. Chem. Eng., 4 (2016) 2969–2979.
  14. X.F. Cao, L. Zhang, X.T. Chen, Z.L. Xue, Persimmon-like (BiO)2CO3 microstructures: hydrothermal preparation, photocatalytic properties and their conversion into Bi2S3, Cryst. Eng. Comm., 13 (2011) 1939–1945.
  15. F. Dong, P.D. Li, J.B. Zhong, X.Y. Liu, Y.X. Zhang, W.L. Cen, H.W. Huang, Simultaneous Pd2+ doping and Pd metal deposition on (BiO)2CO3 microspheres for enhanced and stable visible light photocatalysis, Appl. Catal., A 510 (2016) 161–170.
  16. X. Dong, W. Zhang, W. Cui, Y. Sun, H. Huang, Z. Wu, F. Dong, Pt quantum dots deposited on N-doped (BiO)2CO3: enhanced visible light photocatalytic NO removal and reaction pathway, Catal. Sci. Technol., 7 (2017) 1324–1332.
  17. T. Xiong, M.Q. Wen, F. Dong, J.Y. Yu, L.L. Han, B. Lei, Y.X. Zhang, X.S. Tang, Z.G. Zang, Three dimensional Z-scheme (BiO)2CO3/MoS2 with enhanced visible light photcatalytic NO removal, Appl. Catal. B: Environ., 199 (2016) 87–95.
  18. T.Y. Zhao, J.T. Zai, M. Zou, Q. Zou, Y.Z. Su, K.X. Wang, X.F. Qian, Hierarchical Bi2O2CO3 microspheres with improved visible-light-driven photocatalytic activity, Cryst. Eng. Comm., 13 (2011) 4010–4017.
  19. X. Feng, W. Zhang, Y. Sun, H. Huang, F. Dong, Fe(III) clusters-grafted (BiO)2CO3 superstructures: In situ DRIFTS investigation on IFCT-enhanced visible light photocatalytic NO oxidation, Environ. Sci. Nano, 4 (2017) 604–612.
  20. X. Feng, W. Zhang, H. Deng, Z. Ni, F. Dong, Y. Zhang, Efficient visible light photocatalytic NOx removal with cationic Ag clusters-grafted (BiO)2CO3 hierarchical superstructures, J. Hazard. Mater., 322 (2017) 223–232.
  21. P.M. Schaber, J. Colson, S. Higgins, D. Thielen, B. Anspach, J. Brauer, Thermal decomposition (pyrolysis) of urea in an open reaction vessel, Thermochimica Acta, 424 (2004) 131–142.
  22. J. Zhong, J. Li, F. Feng, Y. Lu, J. Zeng, W. Hu, Z. Tang, Improved photocatalytic performance of SiO2-TiO2 prepared with the assistance of SDBS, J. Mol. Catal. A: Chem., 357 (2012) 101–105.
  23. L.Q. Ye, J.Y. Liu, Z. Jiang, T.Y. Peng, L. Zan, Facets coupling of BiOBr-g-C3N4 composite photocatalyst for enhanced visible-light-driven photocatalytic activity, Appl. Catal. B: Environ., 142–143 (2013) 1–7.
  24. A.R. Gandhe, J.B. Fernandes, A simple method to synthesize N-doped rutile titania with enhanced photocatalytic activity in sunlight, J. Solid State Chem., 178 (2005) 2953–2957.
  25. J. Cao, X. Li, H.L. Lin, S.F. Chen, X.L. Fu, In situ preparation of novel p-n junction photocatalyst BiOI/(BiO)2CO3 with enhanced visible light photocatalytic activity, J. Hazard. Mater., 239–240 (2012) 316–324.
  26. P. Madhusudan, J.R. Ran, J. Zhang, J.G. Yu, G. Liu, Novel urea assisted hydrothermal synthesis of hierarchical BiVO4/Bi2O2CO3 nanocomposites with enhanced visible-light photocatalytic activity, Appl. Catal. B: Environ., 110 (2011) 286–295.
  27. L. Kronik, Y. Shapira, Surface photovoltage phenomena: theory, experiment and application, Surf. Sci. Rep., 254 (1999) 1–205.
  28. L.S. Zhang, K.H. Wong, H.Y. Yip, C. Hu, J.C. Yu, C.Y. Chan, P.K. Wong, Effective photocatalytic disinfection of e. coli K-12 using AgBr-Ag-Bi2WO6 nanojunction system irradiated by visible light: the role of diffusing hydroxyl radicals, Environ. Sci. Technol., 44 (2010) 1392–1398.
  29. Y.X. Chen, S.Y. Yang, K. Wang, L.P. Lou, Role of primary active species and TiO2 surface characteristic in UV-illuminated photodegradation of acid orange 7, J. Photochem. Photobiol. A: Chem., 172 (2005) 47–54.
  30. N. Zhang, S.Q. Liu, X.Z. Fu, Y.J. Xu, Synthesis of M@TiO2 (M = Au, Pd, Pt) core-shell nanocomposites with tunable photoreactivity, J. Phys. Chem. C., 115 (2011) 9136–9145.
  31. M.C. Yin, Z.S. Li, J.H. Kou, Z.G. Zou, Mechanism investigation of visible light-induced degradation in a heterogeneous TiO2/eosin Y/rhodamine B system, Environ. Sci. Technol., 43 (2009) 8361–8366.
  32. X. Xu, X. Duan, Z. Yi, Z. Zhou, X. Fan, Y. Wang, Photocatalytic production of super oxide ion in the aqueous suspensions of two kinds of ZnO under simulated solar light, Catal. Commun., 12 (2010) 169–172.