1. A.M. Ghaedi, A. Vafaei, Applications of artificial neural networks for adsorption removal of dyes from aqueous solution: A review, Adv. Colloid Interface Sci., 245 (2017) 20–39.
  2. K.M. Chu, Prediction of two-metal biosorption equilibria using a neural network, Eur. J. Mineral Proc. Environ. Protect., 3(1) (2003) 119–127.
  3. K. Snigdha, Modeling phenol adsorption in water environment using artificial neural network, Int. Res. J. Environ. Sci., 2(7) (2013) 39–43.
  4. R. Gomez-Gonzalez, F.J. Cerino-Córdova, A.M. Garcia-León, E. Soto-Regalado, N.E. Davila-Guzman, J.J. Salazar-Rabago, Lead biosorption onto coffee grounds: Comparative analysis of several optimization techniques using equilibrium adsorption models and ANN, J. Taiwan Inst. Chem. Eng. 68 (2016) 201–210.
  5. B.G. Saucedo-Delgado, D.A. De Haro-Del Rio, L.M. González-Rodríguez, H.E. Reynel-Ávila, D.I. Mendoza-Castillo, A. Bonilla-Petriciolet, J. Rivera de la Rosa, Fluoride adsorption from aqueous solution using a protonated clinoptilolite and its modeling with artificial neural network-based equations, J. Fluor. Chem., 204 (2017) 98–106.
  6. P.S. Ghosal, K.V. Kattil, M.K. Yadav, A.K. Gupta, Adsorptive removal of arsenic by novel iron/olivine composite: Insights into preparation and adsorption process, J. Environ. Manage., 209 (2018) 176–187.
  7. I. Ali, O.M.L. Alharbi, Z.A. Alothman, A.Y. Badjah, A. AAlwarthan, A.A. Basheer, Artificial neural network modelling of amido black dye sorption on iron composite nanomaterial: Kinetics and thermodynamics studies, J. Mol. Liq., 250 (2018) 1–8.
  8. S.K. Ashan, N. Ziaeifar, R. Khalilnezha, Artificial neural network modelling of Cr(VI) surface adsorption with NiO nanoparticles using the results obtained from optimization of response surface methodology, Neural Comput. Appl., 29 (2018) 969–979.
  9. M. Pazouki, M. Zabihi, J. Shayegan, M.H. Fatehi, Mercury ion adsorption on AC@Fe3O4-NH2-COOH from saline solutions: Experimental studies and artificial neural network modeling, Korean J. Chem. Eng., 35(3) (2018) 671–683.
  10. O.M.L. Alharbi, Sorption, kinetic, thermodynamics and artificial neural network modelling of phenol and 3-amino-phenol in water on composite iron nano-adsorbent, J. Mol. Liq., 260 (2018) 261–269.
  11. S. Agarwal, I. Tyagi, V.K. Gupta, M. Ghaedi, M. Masoomzade, A.M. Ghaedi, B. Mirtamizdoust, Kinetics and thermodynamics of methyl orange adsorption from aqueous solutions—artificial neural network-particle swarm optimization modeling, J. Mol. Liq., 218 (2016) 354–362.
  12. R. Leyva-Ramos, C.J. Geankoplis, Diffusion in liquid-filled pores of activated carbon. I. Pore volume diffusion, Can. J. Chem. Eng., 72 (1994) 262–271.
  13. K. Hornik, M. Stinchcombe, H. White, Multilayer feed forward networks are universal aproximators, Neural Netw., 2 (1989) 359–366.
  14. P. Cardaliaguet, G. Euvrard, Approximation of a function and its derivative with a neural network, Neural Networks, 5 (1992) 207–220.
  15. Z. Zainuddin, O. Pauline, Function approximation using artificial neural networks, Int. J. Syst. Appl. Eng. Develop., 1(4) (2007) 173–178.
  16. S. Yang T.O. Ting, K.L. Man, S. SU. Guan, Investigation of neural networks for function approximation, Procedia Comp. Sci., 17 (2013) 586–594.
  17. S. Ferrary, R.F. Stengel, Smooth function approximation using neural networks, Trans. Neural Networks, 16(1) (2005) 24–38.
  18. T. Nguyen-Thien, T. Tran-Cong, Approximation of functions and their derivatives: A neural network implementation with applications, Appl. Math. Model., 23 (1999) 687–704.
  19. R. Ocampo-Pérez, R. Leyva-Ramos, J. Rivera-Utrilla, J.V. Flores-Cano, M. Sánchez-Polo, Modeling adsorption rate of tetracyclines on activated carbons from aqueous phase, Chem. Eng. Res. Des., 104 (2015) 579–588.
  20. S. Tripathi, R.F. Tabor, Modeling two-rate adsorption kinetics: Two-site, two-species, bilayer and rearrangement adsorption processes, J. Colloid Interf. Sci., 476 (2016) 119–131.
  21. M. Schwaab, E. Steffani, E. Barbosa-Coutinho, J.B. Severo Júnior, Critical analysis of adsorption/diffusion modelling as a function of time square root, Chem. Eng. Sci., 173 (2017) 179–186.
  22. A. Muthukkumaran, K. Aravamudan, Combined Homogeneous Surface Diffusion Model – Design of experiments approach to optimize dye adsorption considering both equilibrium and kinetic aspects, J. Environ. Manage., 204 (2017) 424–435.
  23. S. Eris, S. Azizian, Extension of classical adsorption rate equations using mass of adsorbent: A graphical analysis, Sep. Purif. Technol., 179 (2017) 304–308.
  24. G. Marbán, L.A. Ramírez–Montoya, H. García, J.A. Menéndez, A.M.A. Montes–Morán, Load–dependent surface diffusion model for analyzing the kinetics of protein adsorption onto mesoporous materials, J. Colloid. Interf. Sci., 511 (2017) 27–38.
  25. R. Ocampo-Perez, R. Leyva-Ramos, M.Sanchez-Polo, J. Rivera-Urtilla, Role of pore volumen and surface diffusion in the adsorption of aromatic compounds on activated carbon, Adsorption, 19(1) (2013) 945–957.
  26. R. Ocampo-Perez, R. Leyva-Ramos, P. Alonso-Davila, J. Rivera-Utrilla, M. Sanchez-Polo, Modeling adsorption rate of pyridine onto granular activated carbon, Chem. Eng. J., 165 (2010) 133–141.
  27. C.H. Giles, D. Smith, A. Huitson, A general treatment and classification of the solute adsorption isotherm. I. Theoretical, J. Colloid Interf. Sci., 47(3) (1974) 755.