1. G. Hoetzel, R. Croome, Long-term phytoplankton monitoring of the Darling River at Burtundy, New South Wales: Incidence and significance of cyanobacterial blooms, Marine Freshwater Res., 45 (1994) 747–759.
  2. R.D. JudyJr, P.N. Seeley, T.M. Murray, S.C. Svirsky, M.R. Whitworth, 1982 National Fisheries Survey. Volume I. Technical Report: Initial Findings (No. FWS/OBS-84/06). Engineering- Science Inc Denver Co., 1984.
  3. W.F. Henley, M.A. Patterson, R.J. Neves, A.D. Lemly, Effects of sedimentation and turbidity on lotic food webs: a concise review for natural resource managers, Rev. Fish. Sci., 8 (2000) 125–139.
  4. H. Perlman 2014 Turbidity, In: The USGS Water Science School. Retrieved from on 22 December 2017.
  5. J. Packman, K. Comings, D. Booth, Using turbidity to determine total suspended solids in urbanizing streams in the Puget Lowlands, 1999.
  6. J.L. McClelland, D.E. Rumelhart, G.E. Hinton, The Appeal of Parallel Distributed Processing. MIT Press, Cambridge MA, 1986, pp. 3–44.
  7. S. Agatonovic-Kustrin, R. Beresford, Basic concepts of polynomial neural network (PNN) modeling and its application in pharmaceutical research, J. Pharm. Biomed. Anal., 22 (2000) 717–727.
  8. D.F. Specht, A general regression neural network, IEEE Trans. Neural Networks, 2 (1991) 568–576.
  9. R.R. Goyal, H. Patel, S.J. Mane, Polynomial neural network: an effective tool for predicting water quality for Kalyan-Dombivali Municipal Corporation, Int. J. Sci. Res., 4 (2015) 2863–2866.
  10. M. Khandelwal, T.N. Singh, Prediction of mine water quality by physical parameters, J. Scient. Ind. Res., 64 (2005) 564–570.
  11. L. Swathi, B. Lokeshappa, Polynomial neural networks application in prediction of water quality, Int. J.Innov. Res. Sci. Eng. Technol., 4 (2015) 6911–6916.
  12. E. Dogan, B. Sengorur, R. Koklu, Modeling biological oxygen demand of the Melen River in Turkey using a polynomial neural network technique, J. Environ. Manage., 90 (2009) 1229–1235.
  13. A. Verma, X. Wei, A. Kusiak, Predicting the total suspended solids in wastewater: a data-mining approach, Eng. Applic. Artif. Intell., 26 (2013) 1366–1372.
  14. American Public Health Association and American Water Works Association, Standard Methods for the Examination of Water and Wastewater. American Public Health Association (APHA), 20th Ed, Washington, D.C., USA, 1999.
  15. L. Rodgers, W.A. Joseph, Nicewander, Thirteen ways to look at the correlation coefficient, Amer. Stat., 42 (1988) 59–66.
  16. L. Anastasakis, N. Mort, The development of self-organization techniques in modelling: a review of the group method of data handling (GMDH). Research Report 813, Department of Automatic Control & Systems Engineering, The University of Sheffield, UK, 2001.
  17. L.J. Lancashirea, R.C. Reesb, G.R. Ball, Identification of gene transcript signatures predictive for estrogen receptor and lymph node status using a stepwise forward selection Polynomial Neural Network modelling approach, Artif. Intell. Medicine, 43(2008) 99–111.