References

  1. N.J. Ashbolt, Microbial contamination of drinking water and human health from community water systems, Curr. Environ. Health Rep., 2 (2015) 95–106.
  2. G. Howard, S. Pedley, S. Tibatemwa, Quantitative microbial risk assessment to estimate health risk attributable to water supply: can the technique be applied in developing countries with limited data?, J. Water Health, 4 (2006) 49–65.
  3. A. Nowacka, M. Wlodarczyk-Makula, B. Tchorzewska-Cieslak, J. Rak, The ability to remove the priority PAHs from water during coagulation process including risk assessment, Desal. Wat. Treat., 57 (2016) 1297–1309.
  4. V. de Jesus Gaffney, C.M.M. Almeida, A. Rodrigues, E. Ferreira, M.J. Benoliel, V.V. Cardoso, Occurrence of pharmaceuticals in a water supply system and related human health risk assessment, Water Res., 72 (2015) 199–208.
  5. I. Zimoch, E. Łobos, Evaluation of health risk caused by chloroform in drinking water, Desal. Wat. Treat., 57 (2016) 1027–1033.
  6. E. Szymura, I. Zimoch, Operator reliability in risk assessment of industrial systems function, Przem. Chem., 93 (2014) 111–116 (in Polish).
  7. Md. Asrafuzzaman, A.N.M. Fakhruddin, Md. Alamgir Hossain, Reduction of turbidity of water using locally available natural coagulants, ISRN Microbiol., 2 (2011) 1–6.
  8. A. Bhatnagar, W. Hogland, M. Marques, M. Sillanpaa, An overview of the modification methods of activated carbon for its water treatment applications, Chem. Eng. J. (Amsterdam, Neth.), 219 (2013) 499–511.
  9. Ch. Comninellis, A. Kapalka, S. Malato, S.A. Parsons, I. Poulios, D. Mantzavinos, Perspective advanced oxidation processes for water treatment: advances and trends for R&D, J. Chem. Technol. Biotechnol., 83 (2008) 769–776.
  10. A. Hamamototo, M. Mori, A. Takahashi, M. Nakano, N. Wakikawa, M. Akutagawa, T. Ikehara, Y. Nakava, Y. Kinouchi, New water disinfection system using UVA light-emitting diodes, J. Appl. Microbiol., 103 (2007) 2291–2298.
  11. A. Ikhlaq, D.R. Brown, B. Kasprzyk-Horden, Catalytic ozonation for the removal of organic contaminants in water on alumina, Appl. Catal., B, 165 (2015) 408–418.
  12. J.C. Kruithof, R. Chr. van der Leer, W.A.M. Hijnen, Practical experiences with UV disinfection in the Netherlands, J. Water Supply: Res. Technol.-AQUA, 41 (1992) 88–94.
  13. A. Matilainen, M. Sillanpaa, Removal of natural organic matter from drinking water by advanced oxidation processes, Chemosphere, 80 (2010) 351–365.
  14. J. Nawrocki, Catalytic ozonation in water: Controversies and questions, Discussion paper, Appl. Catal., B, 142–143 (2013) 465–471.
  15. M.A. Oturan, J.J. Aaron, Advanced oxidation processes in water/wastewater treatment: principles and applications. A review, Crit. Rev. Environ. Sci. Technol., 44 (2014) 2577–2641.
  16. A.R. Ribeiro, O.C. Nunes, M.F.R. Pereira, A.M.T. Silva, An overview on the advanced oxidation processes applied for the treatment of water pollutants defined in the recently launched Directive 2013/39/EU, Environ. Int., 75 (2015) 33–51.
  17. T. Schwartz, S. Hoffmann, U. Obst, Formation of natural biofilms during chlorine dioxide and U.V. disinfection in a public drinking water distribution system, J. Appl. Microbiol., 95 (2003) 591–601.
  18. I. Zimoch, B. Kotlarczyk, A. Sołtysik, Use of prehydrolyzed coagulants for the enhancement of water treatment efficiency in the Czaniec Water Treatment Plant, Ochrona Środowiska, Environ. Protect., 29 (2007) 45–49 (in Polish).
  19. G. Liu, Y. Zhang, W.J. Knibbe, C. Feng, W. Liu, G. Medema, W. van der Meer, Potential impacts of changing supply-water quality on drinking water distribution: a review, Water Res., 116 (2017) 135–148.
  20. Lj. Zlatanovi, J.P. van der Hoek, J.H.G. Vreeburg, An experimental study on the influence of water stagnation and temperature change on water quality in a full-scale domestic drinking water system, Water Res., 123 (2017) 761–772.
  21. I. Douterelo, M. Jackson, C. Solomon, J. Boxall, Spatial and temporal analogies in microbial communities in natural drinking water biofilms, Sci. Total Environ., 581–582 (2017) 277–288.
  22. R. Renner, Pipe scales release hazardous metals into drinking water, Environ. Sci. Technol., 6 (2008) 4241.
  23. I. Zimoch, E. Łobos, The optimization of chlorine dose in water treatment process in order to reduce the formation of disinfection by-products, Desal. Wat. Treat., 52 (2014) 3719–3724.
  24. S.D. Richardson, M.J. Plewa, E.D. Wagner, R. Schoeny, D.M. DeMarini, Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: a review and roadmap for research, Mutat. Res., 636 (2007) 178–242.
  25. M.J. Lehtol, I.T. Miettinen, M.M. Keinänen, T.K. Kekki, O. Laine, A. Hirvonen, T. Vartiainen, P.J. Martikainen, Microbiology, chemistry and biofilm development in a pilot drinking water distribution system with copper and plastic pipes, Water Res., 38 (2004) 3769–3779.
  26. J. Wingender, H.C. Flemming, Biofilms in drinking water and their role as reservoir for pathogens, Int. J. Hyg. Environ. Health, 214 (2011) 417–423.
  27. T. Bond, J. Huang, M.R. Templeton, N. Graham, Occurrence and control of nitrogenous disinfection by-products in drinking water. A review, Water Res., 45 (2011) 4341–4354.
  28. I. Zimoch, Computer simulation as a tool assisting in the operation of water supply system, Ochrona Środowiska, Environ. Protect., 30 (2008) 31–35 (in Polish).
  29. M.S. Awopetu, A.O. Coker, J.O. Aribisala, S.O. Awopetu, Water quality in a pipe distribution network: a case study of a communal water distribution network in Ibadan, Nigeria, WIT Trans. Ecol. Environ., 171 (2013) 175–185.
  30. S.P. Luby, A.K. Halder, T.M. Huda, L. Unicomb, M.S. Islam, B.F. Arnold, R.B. Johnston, Microbiological contamination of drinking water associated with subsequent child diarrhea, Am. J. Trop. Med. Hyg., 93 (2015) 904–911.
  31. J.S. Yoder, V. Roberts, G.F. Craun, L. Hicks, N.T. Alexander, V. Radke, R.L. Calderon, M.C. Hlavsa, M.J. Beach, S.L. Roy, Surveillance for waterborne disease and outbreaks associated with drinking water and water not intended for drinking — United States, 2005–2006, MMWR Surveill. Summ., 57 (2008) 39–62.
  32. D.K. Beer, J.W. Gargano, V.A. Roberts, V.R. Hill, L.E. Garrison, P.K. Kutty, E.D. Hilborn, T.J. Wade, K.A. Fullerton, J.S. Yoder, Surveillance for waterborne disease outbreaks associated with drinking water — United States, 2011–2012, MMWR Morb. Mortal. Wkly. Rep., 64 (2015) 842–848.
  33. M. Exner, A. Kramer, L. Lajoie, J. Gebel, S. Engelhart, P. Haretman, Prevention and control of health care associated waterborne infections in health care facilities, Am. J. Infect. Control, 33 (2005) 26–40.
  34. Guidelines for Drinking-Water Quality, 4th ed., WHO, 2011.
  35. Commission Directive (EU) 2015/1787 of 6 October 2015 amending Annexes II and III to Council Directive 98/83/EC on the quality of water intended for human consumption, OJ L 260, 7.10.2015, pp. 6–17.
  36. E. Perrier, M. Kot, H. Castleden, G.A. Gagnon, Drinking water safety plans: barriers and bridges for small systems in Alberta, Canada, Water Policy, 16 (2014) 1140–1154.
  37. O. Schmoll, C. Castell-Exner, I. Chorus, From international developments to local practice: Germany’s evaluation and dialogue process towards Water Safety Plan implementation, Water Sci. Technol., 11 (2011) 379–387.
  38. J.M. Vieira, A strategic approach for Water Safety Plans implementation in Portugal, J. Water Health, 9 (2011) 107–116.
  39. M.J. Gunnarsdottir, S. Gardarsson, M. Elliott, G. Sigmundsdottir, J. Bartram, Benefits of Water Safety Plans: Microbiology, Compliance, and Public Health, Environ. Sci. Technol., 46 (2012) 7782–7789.
  40. J.M. Bernardo, A.F.M. Smith, Baysian Theory, Wiley, Chichester, 1993.
  41. J. Rak, Selected problems of water supply safety, Environ. Prot. Eng., 35 (2009) 29–35.
  42. N. Fenton, M. Neil, Risk Assessment and Decision Analysis with Baysian Networks, CRC Press Taylor & Francis Group, Boca Raton, 2012.
  43. B. Tchórzewska-Cieślak, Bayesian model of urban water safety management, Global NEST J., 16 (2014) 667–675.
  44. W.E. Thompson, M.D. Springer, Bayes analysis of availability for a system consisting of several independent subsystems, IEEE Trans. Reliab., 21 (1972) 212–218.
  45. R. Aspinall, An inductive modelling procedure based on Bayes’ theorem for analysis of pattern in spatial data, Int. J. Geogr. Inf. Sci., 6 (1992) 105–121.
  46. B.F. Hobbs, Baysian methods for analyzing climate change and water resource uncertainties, J. Environ. Manage., 49 (1997) 53–72.
  47. K. Shihab, N. Al-Chalabi, Bayesian Methods for Assessing Water Quality, Preceding Computer Science & Information Technology, 2014, pp. 397–407.
  48. M.M. Sahoo, K.C. Patra, J.B. Swain, K.K. Khatua, Evaluation of water quality with application of Bayes’ rule and entropy weight method, Eur. J. Environ. Civil Eng., 21 (1017) 730–752.
  49. M.P. Weinstein, C. Bentivegna, M.P. Bovitz, Ch.R. Harman, R.A. Hoke, U. Howson, J. Kennen, Z. Qiu, Bayesian Inference: Application to Environmental Management and Decisionmaking. Draft Final Report, Scientific Advisory Board (SAB), New Jersey, 2013.
  50. W.J. Dawsey, B.S. Minsker, E. Amir, Real time assessment of drinking water systems using a dynamic Bayesian network, Proc. of the 2007 World Environ. Water Resour. Congress, ed. K.C. Kabbes, ASCE, Tampa 2007, pp. 184–192.
  51. K. Ammar, M. McKee, J. Kaluarachchi, Bayesian method for groundwater quality monitoring network analysis, J. Water Res. Plan. Manage., 133 (2011) 123–135.
  52. Regulation of the Polish Minister of Health of 7 December 2017 Amending the Regulation on the Quality of Water Intended for Human Consumption, J. Laws No 2017, Item 2294. Available from: http://dziennikustaw.gov.pl/du/2017/2294/1.