References

  1. G. Sharma, M. Naushad, D. Pathania, A. Kumar, A multifunctional nanocomposite pectin thorium (IV) tungstomolybdate for heavy metal separation and photoremediation of malachite green, Desal. Water Treat., 57 (2016) 19443–19455.
  2. G. Sharma, M. Naushad, A. Kumar, S. Rana, S. Sharma, A. Bhatnagar, F.J. Stadler, A.A. Ghfar, M.R. Khan. Efficient removal of coomassie brilliant blue R-250 dye using starch/poly (alginic acid-cl-acrylamide) nanohydrogel, Process Safety Env. Protect., 109 (2017) 301–310.
  3. A. Kumar, M. Naushad, A. Rana, G. Sharma, A.A. Ghfar, F.J. Stadler, M.R. Khan, ZnSe-WO3 nano-hetero-assembly stacked on Gum ghatti for photo-degradative removal of Bisphenol A: Symbiose of adsorption and photocatalysis, Int. J. Biol. Macromol., 104 (2017) 1172–1184.
  4. A.M.P. Martins, K. Pagilla, J.J. Heijnen, M.C. van Loosdrecht, Filamentous bulking sludge—a critical review, Water Res., 38 (2004) 793–817.
  5. P. Madoni, D. Davoli, G. Gibin, Survey of filamentous microorganisms from bulking and foaming activated-sludge plants in Italy, Water Res., 34 (2000) 1767–1772.
  6. N. Ganidi, S.Tyrrel, E. Cartmell, Anaerobic digestion foaming causes – a review, Bioresour. Technol., 100 (2009) 5546–5554.
  7. E. Kowalska, E. Paturej, M. Zielińska, Use of lecaneinermis for control of sludge bulking caused by the haliscomenobacter genus, Desal. Water Treat., 57 (2015) 1–8.
  8. V. Ferreira, C. Martins, M.O. Pereira, A. Nicolau, Use of an aerobic selector to overcome filamentous bulking in an activated sludge wastewater treatment plant, Environ. Technol., 35 (2014) 1525–1531.
  9. V. Agridiotis, C.F. Forster, C. Carliell-Marquet, Addition of Al and Fe salts during treatment of paper mill effluents to improve activated sludge settlement characteristics, Bioresour. Technol., 98 (2007) 2926–2934.
  10. J. Guo, Y. Peng, Z. Wang, Z. Yuan, X. Yang, S. Wang, Control filamentous bulking caused by chlorine-resistant Type 021N bacteria through adding a biocide CTAB, Water Res., 46 (2012) 6531–6542.
  11. L. Leven, E. Wijnbladh, M. Tuvesson, C. Kragelund, S. Hallin, Control of Microthrixparvicella and sludge bulking by ozone in a full-scale WWTP, Water Sci. Technol., (2016) 866–872.
  12. J.H. Guo, Y.Z. Peng, C.Y. Peng, S.Y. Wang, Y. Chen, H.J. Huang, Z.R. Sun, Energy saving achieved by limited filamentous bulking sludge under low dissolved oxygen, Bioresour. Technol., 101 (2010) 1120–1126.
  13. W.D. Tian, W.G. Li, H. Zhang, X.R. Kang, M.C. van Loosdrecht, Limited filamentous bulking in order to enhance integrated nutrient removal and effluent quality, Water Res., 45 (2011) 4877–4884.
  14. J. Guo, Y. Peng, S. Wang, X. Yang, Z. Wang, A. Zhu, Stable limited filamentous bulking through keeping the competition between floc-formers and filaments in balance, Bioresour. Technol., 103 (2012) 7–15.
  15. M. Jiang, Y. Zhang, X. Zhou, Y. Su, M. Zhang, K. Zhang, Simultaneous carbon and nutrient removal in an airlift loop reactor under a limited filamentous bulking state, Bioresour. Technol., 130 (2013) 406–411.
  16. X. Yang, Y. Peng, N. Ren, J. Guo, X. Tang, J. Song, Nutrient removal performance and microbial community structure in an EBPR system under the limited filamentous bulking state, Bioresour. Technol., 144 (2013) 86–93.
  17. J. Van Leeuwen, A review of the potential application of non-specific activated sludge bulking control, Water SA, 18 (1992) 101–106.
  18. J. Wanner, P. Grau, Filamentous bulking in nutrient removal activated sludge systems, Water Sci. Technol., 20 (1988) 1–8.
  19. P.F. Strom, D. Jenkins, Identification and significance of filamentous microorganisms in activated sludge, J. Water Pollut. Contr. Fed., 56 (1984) 449–459.
  20. A. Wachtmeister, T. Kuba, M.C.M. Van Loosdrecht, J.J. Heijnen, A sludge characterization assay for aerobic and denitrifying phosphorus removing sludge, Water Res., 31 (1997) 471–478.
  21. D.H. Eikelboom, Process Control of Activated Sludge Plants by Microscopic Investigation, IWA Publishing, London 2000.
  22. D. Jenkins, M.G. Richard, G.T. Daigger, Manual on the Causes and Control of Activated Sludge Bulking, Foaming, and Other Solids Separation Problems, IWA Publishing, London 2004.
  23. L.A. Luongo, X.J. Zhang, Toxicity of carbon nanotubes to the activated sludge process, J. Hazard. Mater., 178 (2010) 356–362.
  24. M.A. Cardete, J. Mata-Álvarez, J. Dosta, R. Nieto-Sánchez, Sludge settling enhancement in a pilot scale activated sludge process treating petrochemical wastewater by implementing aerobic or anoxic selectors, J. Environ. Chem. Eng., 5 (2017) 3472–3482.
  25. X. Zhang, S. Zheng, X. Xiao, L. Wang, Y. Yin, Simultaneous nitrification/denitrification and stable sludge/water separation achieved in a conventional activated sludge process with severe filamentous bulking, Bioresour. Technol., 226 (2017) 267–271.
  26. S. He, D.L. Gall, K.D. McMahon, “Candidatus Accumulibacter” population structure in enhanced biological phosphorus removal sludges as revealed by polyphosphate kinase genes, Appl. Environ. Microbiol., 73 (2007) 5865–5874.
  27. Y.Z. Peng, G. Zhu, Biological nitrogen removal with nitrification and denitrification via nitrite pathway, Appl. Microbiol. Biotechnol., 73 (2006) 15–26.
  28. G.J.F. Smolders, J.M. Klop, M.C.M. Van Loosdrecht, J.J. Heijnen, A metabolic model of the biological phosphorus removal process: I. Effect of the sludge retention time, Biotechnol. Bioeng., 48 (1995) 222–233.
  29. Y. Chen, C. Peng, J. Wang, L. Ye, L. Zhang, Y. Peng, Effect of nitrate recycling ratio on simultaneous biological nutrient removal in a novel anaerobic/anoxic/oxic (A2/O)-biological aerated filter (BAF) system, Bioresour. Technol., 102 (2011) 5722–5727.
  30. D.S. Lee, C.O. Jeon, J.M. Park, Biological nitrogen removal with enhanced phosphate uptake in a sequencing batch reactor using single sludge system, Water Res., 35 (2001) 3968–3976.
  31. J. Fan, T. Tao, J. Zhang, G. You, Performance evaluation of a modified anaerobic/anoxic/oxic (A2/O) process treating low strength waste water, Desalination, 249 (2009) 822–827.
  32. M.K. deKreuk, J.J. Heijnen, M.C. vanLoosdrecht, Simultaneous COD, nitrogen, and phosphate removal by aerobic granular sludge, Biotechnol. Bioeng., 90 (2005) 761–769.
  33. R.J. Seviour, T. Mino, M. Onuki, The microbiology of biological phosphorus removal in activated sludge systems, FEMS Microbiol. Rev., 27 (2003) 99–127.
  34. T.M. Williams, R.F. Unz, The nutrition of Thiothrix, type 021N, Beggiatoa and Leucothrix strains, Water Res., 23 (1989) 15–22.
  35. D. Dionisi, C. Levantesi, V. Renzi, M. Majone, PHA storage from several substrates by different morphological types in an anoxic/aerobic SBR, Water Sci. Technol., 1–2 (2002) 337–344.
  36. H. Stratton, B. Seviour, P. Brooks, Activated sludge foaming: what causes hydrophobicity and can it be manipulated to control foaming? Water Sci. Technol., 37 (1998) 503–509.
  37. R. Conrad, The global methane cycle: recent advances in understanding the microbial processes involved, Environ. Microbiol. Rep., 1 (2009) 285–292.
  38. L. Mehlig, M. Petzold, C. Heder, S. Günther, Biodiversity of polyphosphate accumulating bacteria in eight WWTPs with different modes of operation, J. Environ. Eng., 139 (2013) 1089–1098.
  39. P. Hugenholtz, G.W. Tyson, R.I. Webb, A.M. Wagner, Investigation of candidate division TM7, a recently recognized major lineage of the domain bacteria with no known pure-culture representatives, Appl. Environ. Microbiol., 67 (2001) 411–419.
  40. J. Forss, J. Pinhassi, M. Lindh, U. Welander, Microbial diversity in a continuous system based on rice husks for biodegradation of the azo dyes Reactive Red 2 and Reactive Black 5, Bioresour. Technol., 130 (2013) 681–688.