References

  1. K. Tahri, Desalination experience in Morocco, Desalination, 136 (2001) 43–48.
  2. R. Matz, U. Fisher, A comparison of the relative economics of sea water desalination by vapor compression and reverse osmosis for small to medium capacity plants, Desalination, 36 (1981) 137–151.
  3. M.A. Darwish, Thermal analysis of vapor compression desalination system, Desalination, 69 (1988) 275–295.
  4. O.A. Hamed, A.M. Zamamiri, S. Aly, N. Lior, Thermal performance and exergy analysis of a thermal vapor compression desalination system, Energy Conv. Manage., 37 (1996) 379–387.
  5. F. Al-Juwayhel, H. El-Dessouky, H. Ettouney, Analysis of single-effect evaporator desalination systems combined with vapor compression heat pumps, Desalination, 114 (1997) 253–275.
  6. H. Ettouney, H. El-Dessouky, Y. Al-Roumi, Analysis of mechanical vapour compression desalination process, Int. J. Energy Res., 23 (1999) 431–451.
  7. H.S. Aybar, Analysis of a mechanical vapor compression desalination system, Desalination, 142 (2002) 181–186.
  8. J.R. Lara, G. Noyes, M.T. Holtzapple, An investigation of high operating temperatures in mechanical vapor-compression desalination, Desalination, 227 (2008) 217–232.
  9. J. Ji, R. Wang, L. Li, H. Ni, Simulation and analysis of single effect thermal vapour compression desalination system at variable operating conditions, Chem. Eng. Technol., 30 (2007) 1633–1641.
  10. A.S. Nafey, H.E.S. Fath, A.A. Mabrouk, Thermoeconomic design of a multi-effect evaporation mechanical vapor compression (MEE–MVC) desalination process, Desalination, 230 (2008) 1–15.
  11. M.A. Sharaf, A.S. Nafey, L.G. Rodríguez, Thermo-economic analysis of solar thermal power cycles assisted MED-VC (multi effect distillation-vapor compression) desalination processes, Energy, 36 (2011) 2753–2764.
  12. J. Shen, Z. Xing, X. Wang, Z. He, Analysis of a single-effect mechanical vapor compression desalination system using water injected twin screw compressors, Desalination, 333 (2014) 146–153.
  13. A. Kouta, F. Al-Sulaiman, M. Atif, S. Bin Marshad, Entropy, exergy, and cost analyses of solar driven cogeneration systems using supercritical CO2 Brayton cycles and MEE-TVC desalination system, Energy Convers. Manage., 115 (2016) 253–264.
  14. M. Lucas, B. Tabourier, The mechanical vapour compression process applied to seawater desalination: a 1,500 ton/d unit installed in the nuclear power plant of Flamanville, France, Desalination, 52 (1985) 1123–133.
  15. Z. Zimerman, Development of large capacity high efficiency mechanical vapor compression (MVC) units, Desalination, 96 (1994) 51–68.
  16. J.M. Veza, Mechanical vapour compression desalination plants-A case study, Desalination, 101 (1995) 1–10.
  17. A. Karameldin, A. Lotfy, S. Mekhemar, The Red Sea area wind-driven mechanical vapor compression desalination system, Desalination, 153 (2002) 47–53.
  18. Narmine H. Aly, Adel K. El-Fiqi, Mechanical vapor compression desalination systems – a case study, Desalination, 158 (2003) 143–150.
  19. R. Bahar, M.N.A. Hawlader, L.S. Woei, Performance evaluation of a mechanical vapor compression desalination system, Desalination, 166 (2004) 123–127.
  20. A.M. Helal, S.A. Al-Malek, Design of a solar-assisted mechanical vapor compression (MVC) desalination unit for remote areas in the UAE, Desalination, 197 (2006) 273–300.
  21. Y.M. El-Sayed, Thermoeconomics of some options of large mechanical vapor-compression units, Desalination, 125 (1999) 251–257.
  22. M. Khayet, Solar desalination by membrane distillation: Dispersion in energy consumption analysis and water production costs (a review), Desalination, 308 (2013) 89–101.
  23. D. Zejli, A. Ouammi, R. Sacile, H. Dagdougui, A. Elmidaoui, An optimization model for a mechanical vapor compression desalination plant driven by a wind/PV hybrid system, Appl. Energy, 88 (2011) 4042–4054.
  24. D.Q. Kern: Process Heat Transfer, McGraw-Hill, 1965.
  25. Y. El Mghouchi, A. El Bouardi, Z. Choulli, T. Ajzoul, New model to estimate and evaluate the solar radiation, Int. J. Sustain. Built Environ., 3 (2014) 225–234.
  26. H. Nfaoui, J. Bahrau, A.S. Darwish, A.A.M. Sayigh, Wind energy potential in Morocco, Renew. Energy, 1 (1991) 1–8.
  27. D.B. Nelson, M.H. Nehrir, C. Wang, Unit sizing and cost analysis of stand-alone hybrid wind/PV/fuel cell power generation systems, Renew. Energy, 31 (2006) 1641–1656.
  28. M.B. Kumbhare, S.D. Dawande, Performance evaluation of plate heat exchanger in laminar and turbulent flow conditions, Int. J. Chem. Sci. Appl., 4 (2013) 77–83.
  29. H. Nariai, Friction Pressure Drop and heat transfer coefficient of two-phase flow in helically coiled tube once-through steam generator for integrated type marine water reactor, J. Nucl. Sci. Technol., 19 (1982) 936–947.
  30. B. Fabuss, A. Korosi, Boiling point elevations of seawater and it concentrates, J. Chem. Eng. Data, 11 (1966) 606–609.
  31. H. El-Dessouky, H.M. Ettouney, Fundamentals of Salt Water Desalination. Elsevier, Amsterdam, 2002.
  32. X. Liu, W. Chen, M. Gu, S. Shen, G. Cao, Thermal and economic analyses of solar desalination system with evacuated tube collectors, Solar Energy, 93 (2013) 144–150.
  33. Y.M. El-Sayed, Designing desalination systems for higher productivity, Desalination, 134 (2001) 129–159.
  34. W. El-Mudir, M. El-Bousiffi, S. Al-Hengari, Performance evaluation of a small size TVC desalination plant, Desalination, 165 (2004) 269–279.
  35. F. Balkan, N. Colak, A. Hepbasli, Performance evaluation of a triple-effect evaporator with forward feed using exergy analysis, Int. J. Energy Res., 29 (2005) 455–470.