1. J. Lu, Z.R. Wang, X.Y. Ma, Q. Tang, Y. Li, Modeling of the electrocoagulation process: a study on the mass transfer of electrolysis and hydrolysis products, Chem. Eng. Sci., 165 (2017) 165–176.
  2. M. Vepsäläinen, M. Pulliainen, M. Sillanpää, Effect of electrochemical cell structure on natural organic matter (NOM) removal from surface water through electrocoagulation (EC), Sep. Purif. Technol., 99 (2012) 20–27.
  3. A. Akyol, Treatment of paint manufacturing wastewater by electrocoagulation, Desalination, 285 (2012) 91–99.
  4. J. Lu, Z.R. Wang, Y.L. Liu, Q. Tang, Removal of Cr ions from aqueous solution using batch electrocoagulation: Cr removal mechanism and utilization rate of in situ generated metal ions, Process Saf. Environ. Prot., 104 (2016) 436–443.
  5. D. Lakshmanan, D.A. Clifford, G. Samanta, Ferrous and ferric ion generation during iron electrocoagulation, Environ. Sci. Technol., 43 (2009) 3853–3859.
  6. U. Tezcan Un, A. Savas Koparal, U. Bakir Ogutveren, Fluoride removal from water and wastewater with a bach cylindrical electrode using electrocoagulation, Chem. Eng. J., 223 (2013) 110–115.
  7. T. Harif, M. Khai, A. Adin, Electrocoagulation versus chemical coagulation: coagulation/flocculation mechanisms and resulting floc characteristics, Water Res., 46 (2012) 3177–3188.
  8. D. Lakshmanan, D.A. Clifford, G. Samanta, Comparative study of arsenic removal by iron using electrocoagulation and chemical coagulation, Water Res., 44 (2010) 5641–5652.
  9. J. Lu, Q. Tang, Z.R. Wang, C. Xu, S.L. Lin, A study on continuous and batch electrocoagulation process for fluoride removal, Desal. Wat. Treat., 57 (2016) 28417–28425.
  10. J. Lu, Y. Li, M.X. Yin, X.Y. Ma, S.L. Lin, Removing heavy metal ions with continuous aluminum electrocoagulation: a study on back mixing and utilization rate of electro-generated Al ions, Chem. Eng. J., 267 (2015) 86–92.
  11. S. Ahmadzadeha, A. Asadipourc, M. Yoosefiand, M. Dolatabadie, Improved electrocoagulation process using chitosan for efficient removal of cefazolin antibiotic from hospital wastewater through sweep flocculation and adsorption: kinetic and isotherm study, Desal. Wat. Treat., 92 (2017) 160–171.
  12. S. Ahmadzadeh, A. Asadipour, M. Pournamdari, B. Behnam, H.R. Rahimi, M. Dolatabadi, Removal of ciprofloxacin from hospital wastewater using electrocoagulation technique by aluminum electrode; optimization and modelling through response surface methodology, Process Saf. Environ. Prot., 109 (2017) 538–547.
  13. M. Yoosefian, S. Ahmadzadeh, M. Aghasi, M. Dolatabadi, Optimization of electrocoagulation process for efficient removal of ciprofloxacin antibiotic using iron electrode: kinetic and isotherm studies of adsorption, J. Mol. Liq., 225 (2017) 544–553.
  14. K.W. Pi, Q. Xiao, H.Q. Zhang, M. Xia, A.R. Gerson, Decolorization of synthetic Methyl Orange wastewater by electrocoagulation with periodic reversal of electrodes and optimization by RSM, Process Saf. Environ., 92 (2014) 796–806.
  15. N. Drouiche, S. Aoudj, H. Lounici, M. Drouiche, T. Ouslimane, N. Ghaffour, Fluoride removal from pretreated photovoltaic wastewater by electrocoagulation: an investigation of the effect of operational parameters, Procedia Eng., 33 (2012) 385–391.
  16. E. Bazrafshan, K.A. Ownagh, A.H. Mahvi, Application of electrocoagulation process using iron and aluminum electrodes for fluoride removal from aqueous environment, J. Chem., 9 (2012) 2297–2308.
  17. M.M. Emamjomeh, M. Sivakumar, Fluoride removal by a continuous flow electrocoagulation reactor, J. Environ. Manage., 90 (2009) 1204–1212.
  18. Y. Tian, W. He, X. Zhu, W. Yang, N. Ren, B.E. Logan, Energy efficient electrocoagulation using an air-breathing cathode to remove nutrients from wastewater, Chem. Eng. J., 292 (2016) 308–314.
  19. Y. Si, G. Li, F. Zhang, Energy-efficient oxidation and removal of arsenite from groundwater using air-cathode iron electrocoagulation, Environ. Sci. Technol., 2 (2016) 71–75.
  20. J.H. Kim, H.A. Maitlo, J.Y. Park, Treatment of synthetic arsenate wastewater with iron-air fuel cell electrocoagulation to supply drinking water and electricity in remote areas, Water Res., 115 (2017) 278–286.
  21. P. Song, Z. Yang, G. Zeng, X. Yang, H. Xu, L. Wang, R. Xu, W. Xiong, K. Ahmad, Electrocoagulation treatment of arsenic in wastewaters: a comprehensive review, Chem. Eng. J., 317 (2017) 707–725.
  22. P.V. Nidheesh, T.S.A. Singh, Arsenic removal by electrocoagulation process: recent trends and removal mechanism, Chemosphere, 181 (2017) 418–432.
  23. N. Balasubramanian, T. Kojima, C. Srinivasakannan, Arsenic removal through electrocoagulation: kinetic and statistical modeling, Chem. Eng. J., 155 (2009) 76–82.
  24. C. Delaire, S. Amrose, M. Zhang, J. Hake, A. Gadgil, How do operating conditions affect As(III) removal by iron electrocoagulation?, Water Res., 112 (2017) 185–194.
  25. B. Yang, Y. Han, G. Yu, Q. Zhuo, S. Deng, J. Wu, P. Zhang, Efficient removal of perfluoroalkyl acids (PFAAs) from aqueous solution by electrocoagulation using iron electrode, Chem. Eng. J., 303 (2016) 384–390.
  26. Z. Ma, Y. Yang, Y. Jiang, B. Xi, T. Yang, X. Peng, X. Lian, K. Yan, H. Liu, Enhanced degradation of 2,4-dinitrotoluene in groundwater by persulfate activated using iron–carbon microelectrolysis, Chem. Eng. J., 311 (2017) 183–190.
  27. K.S. Hashim, A. Shaw, R. Al Khaddar, M.O. Pedrola, D. Phipps, Iron removal, energy consumption and operating cost of electrocoagulation of drinking water using a new flow column reactor, J. Environ. Manage., 189 (2017) 98–108.
  28. L. Li, C.M.v. Genuchten, S.E.A. Addy, J. Yao, N. Gao, A.J. Gadgil, Modeling As(III) oxidation and removal with iron electrocoagulation in groundwater, Environ. Sci. Technol., 46 (2012) 12038–12045.
  29. J.N. Hakizimana, B. Gourich, M. Chafi, Y. Stiriba, C. Vial, P. Drogui, J. Naja, Electrocoagulation process in water treatment: a review of electrocoagulation modeling approaches, Desalination, 404 (2017) 1–21.
  30. K.L. Dubrawski, C. Du, M. Mohseni, General potential-current model and validation for electrocoagulation, Electrochim. Acta, 129 (2014) 187–195.
  31. A. Vazquez, I. Rodriguez, I. Lazaro, Primary potential and current density distribution analysis: a first approach for designing electrocoagulation reactors, Chem. Eng. J., 179 (2012) 253–261.
  32. X. Chen, G. Chen, P.L. Yue, Investigation on the electrolysis voltage of electrocoagulation, Chem. Eng. Sci., 57 (2002) 2449–2455.
  33. Z. Qi, S. You, N. Ren, Wireless electrocoagulation in water treatment based on bipolar electrochemistry, Electrochim. Acta, 229 (2017) 96–101.
  34. M. Mechelhoff, G.H. Kelsall, N.J.D. Graham, Electrochemical behaviour of aluminium in electrocoagulation processes, Chem. Eng. Sci., 95 (2013) 301–312.
  35. J. Lu, Y.X. Wang, J. Zhu, Numerical simulation of the electrodeionization (EDI) process accounting for water dissociation, Electrochim. Acta, 55 (2010) 2673–2686.
  36. J. Lu, Y.X. Wang, Y.Y. Lu, G.L. Wang, L. Kong, J. Zhu, Numerical simulation of the electrodeionization (EDI) process for producing ultrapure water, Electrochim. Acta, 55 (2010) 7188–7198.
  37. J. Lu, X.Y. Ma, Y.X. Wang, Numerical simulation of the electrodeionization (EDI) process with layered resin bed for deeply separating salt ions, Desal. Wat. Treat., 57 (2015) 10546–10559.
  38. L.P. Holmes, D.L. Cole, E.M. Eyring, Kinetics of aluminum ion hydrolysis in dilute solutions, J. Phys. Chem., 72 (1968) 301–304.
  39. J.M. Duan, J. Gregory, Coagulation by hydrolysing metal salts, Adv. Colloid Interface Sci., 100–102 (2003) 475–502.