1. G. Li, S. Gao, G. Zhang, X. Zhang, Enhanced adsorption of phosphate from aqueous solution by nanostructured iron(III)–copper(II) binary oxides, Chem. Eng. J., 235 (2014) 124–131.
  2. Y. Li, Q. Xie, Q. Hu, C. Li, Z. Huang, X. Yang, H. Guo, Surface modification of hollow magnetic Fe3O4@NH2-MIL-101(Fe) derived from metal-organic frameworks for enhanced selective removal of phosphates from aqueous solution, Sci. Rep., 6 (2016) 30651–30662.
  3. N. Mehrabi, M. Soleimani, H. Sharififard, M. Madadi Yeganeh, Optimization of phosphate removal from drinking water with activated carbon using response surface methodology (RSM), Desal. Wat. Treat., 57 (2016) 15613–15618.
  4. M. Arshadi, J. Etemad Gholtash, H. Zandi, S. Foroughifard, Phosphate removal by a nano-biosorbent from the synthetic and real (Persian Gulf) water samples, RSC. Adv., 5 (2015) 43290–43302.
  5. A. Alshameri, C. Yan, X. Lei, Enhancement of phosphate removal from water by TiO2/Yemeni natural zeolite: preparation, characterization and thermodynamic, Microporous Mesoporous Mater., 196 (2014) 145–157.
  6. Y.-J. Tu, C.-F. You, Phosphorus adsorption onto green synthesized nano-bimetal ferrites: equilibrium, kinetic and thermodynamic investigation, Chem. Eng. J., 251 (2014) 285–292.
  7. A.F. de Sousa, T.P. Braga, E.C.C. Gomes, A. Valentini, E. Longhinotti, Adsorption of phosphate using mesoporous spheres containing iron and aluminum oxide, Chem. Eng. J., 210 (2012) 143–149.
  8. J. Lu, D. Liu, J. Hao, G. Zhang, B. Lu, Phosphate removal from aqueous solutions by a nano-structured Fe–Ti bimetal oxide sorbent, Chem. Eng. Res. Des., 93 (2015) 652–661.
  9. L. Yan, K. Yang, R. Shan, T. Yan, J. Wei, S. Yu, H. Yu, B. Du, Kinetic, isotherm and thermodynamic investigations of phosphate adsorption onto core–shell Fe3O4@LDHs composites with easy magnetic separation assistance, J. Colloid Interface Sci., 448 (2015) 508–516.
  10. H. Jiang, P. Chen, S. Luo, X. Tu, Q. Cao, M. Shu, Synthesis of novel nanocomposite Fe3O4/ZrO2/chitosan and its application for removal of nitrate and phosphate, Appl. Surf. Sci., 284 (2013) 942–949.
  11. E.M. van Voorthuizen, A. Zwijnenburg, M. Wessling, Nutrient removal by NF and RO membranes in a decentralized sanitation system, Water Res., 39 (2005) 3657–3667.
  12. (accessed 27 January 2018).
  13. M. Arshadi, A.R. Faraji, M. Mehravar, Dye removal from aqueous solution by cobalt-nano particles decorated aluminum silicate: kinetic, thermodynamic and mechanism studies, J. Colloid Interface Sci., 440 (2015) 91–101.
  14. L. Filipponi, D. Sutherland, Nanotechnologies: Principles, Applications, Implications and Hands-Activities, European Commission, Luxembourg, 2013.
  15. L. Cui, L. Hu, X. Guo, Y. Zhang, Y. Wang, Q. Wei, B. Du, Kinetic, isotherm and thermodynamic investigations of Cu2+ adsorption onto magnesium hydroxyapatite/ferroferric oxide nanocomposites with easy magnetic separation assistance, J. Mol. Liq., 198 (2014) 157–163.
  16. A.Z.M. Badruddoza, A.S.H. Tay, P.Y. Tan, K. Hidajat, M.S. Uddin, Carboxymethyl-β-cyclodextrin conjugated magnetic nanoparticles as nano-adsorbents for removal of copper ions: synthesis and adsorption studies, J. Hazard. Mater., 185 (2011) 1177–1186.
  17. R. Davarnejad, P. panahi, Cu (II) removal from aqueous wastewaters by adsorption on the modified Henna with Fe3O4 nanoparticles using response surface methodology, Sep. Purif. Technol., 158 (2016) 286–292.
  18. M.A. Zulfikar, S. Afrita, D. Wahyuningrum, M. Ledyastuti, Preparation of Fe3O4-chitosan hybrid nano-particles used for humic acid adsorption, Environ. Nanotechnol. Monit. Manage., 6 (2016) 64–75.
  19. J. Yang, Q. Zeng, L. Peng, M. Lei, H. Song, B. Tie, J. Gu, La EDTA coated Fe3O4 nanomaterial: Preparation and application in removal of phosphate from water, J. Environ. Sci., 25 (2013) 413–418.
  20. Q. Gao, F. Chen, J. Zhang, G. Hong, J. Ni, X. Wei, D. Wang, The study of novel Fe3O4@γ-Fe2O3 core/shell nanomaterials with improved properties, J. Magn. Magn. Mater., 321 (2009) 1052–1057.
  21. G. Zhang, H. Liu, R. Liu, J. Qu, Removal of phosphate from water by a Fe–Mn binary oxide adsorbent, J. Colloid Interface Sci., 335 (2009) 168–174.
  22. F. Long, J.L. Gong, G.M. Zeng, L. Chen, X.Y. Wang, J.H. Deng, Q.Y. Niu, H.Y. Zhang, X.R. Zhang, Removal of phosphate from aqueous solution by magnetic Fe–Zr binary oxide, Chem. Eng. J., 171 (2011) 448–455.
  23. S.-Y. Yoon, C.-G. Lee, J.-A. Park, J.-H. Kim, S.-B. Kim, S.-H. Lee, J.-W. Choi, Kinetic, equilibrium and thermodynamic studies for phosphate adsorption to magnetic iron oxide nanoparticles, Chem. Eng. J., 236 (2014) 341–347.
  24. L. Lai, Q. Xie, L. Chi, W. Gu, D. Wu, Adsorption of phosphate from water by easily separable Fe3O4@SiO2 core/shell magnetic nanoparticles functionalized with hydrous lanthanum oxide, J. Colloid Interface Sci., 465 (2016) 76–82.
  25. R.Y. Hong, S.Z. Zhang, G.Q. Di, H.Z. Li, Y. Zheng, J. Ding, D.G. Wei, Preparation, characterization and application of Fe3O4/ZnO core/shell magnetic nanoparticles, Mater. Res. Bull., 43 (2008) 2457–2468.
  26. R.Y. Hong, J.H. Li, X. Cao, S.Z. Zhang, G.Q. Di, H.Z. Li, D.G. Wei, On the Fe3O4/Mn1−xZnxFe2O4 core/shell magnetic nanoparticles, J. Alloys Compd., 480 (2009) 947–953.
  27. R.P. Kralchevska, R. Prucek, J. Kolařík, J. Tuček, L. Machala, J. Filip, V.K. Sharma, R. Zbořil, Remarkable efficiency of phosphate removal: ferrate(VI)-induced in situ sorption on core-shell nanoparticles, Water Res., 103 (2016) 83–91.
  28. L.S. Clesceri, A.E. Greenberg, A.D. Eaton, Standard Methods for the Examination of Water and Wastewater, 20th ed., American Public Health Association, 1999.
  29. D.C. Montgomery, Design and Analysis of Experiments, fifth ed., John Wiley & Sons, New York, 2001.
  30. (accessed 27 January 2018).
  31. C. Wang, S. Yang, H. Chang, Y. Peng, J. Li, Structural effects of iron spinel oxides doped with Mn, Co, Ni and Zn on selective catalytic reduction of NO with NH3, J. Mol. Catal. A: Chem., 376 (2013) 13–21.
  32. S. Rajesh, S. Rajakarunakaran, R. Sudhakara Pandian, Modeling and optimization of Sliding specific wear and coefficient of friction of aluminum based red mud metal matrix composite using Taguchi method and response surface methodology, Mater. Phys. Mech., 15 (2012) 150–166.
  33. M. Feilizadeh, M. Rahimi, S.M. Esmaeil Zakeri, N. Mahinpey, M. Vossoughi, M. Qanbarzadeh, Individual and interaction effects of operating parameters on the photocatalytic degradation under visible light illumination: response surface methodological approach, Can. J. Chem. Eng., 95 (2017) 1228–1235.
  34. S.H. Kareem, A.A. Ati, M. Shamsuddin, S.L. Lee, Nanostructural, morphological and magnetic studies of PEG/Mn(1_x)Zn(x)Fe2O4 nanoparticles synthesized by co-precipitation, Ceram. Int., 41 (2015) 11702–11709.
  35. H. Yang, Q. Liu, S. Masse, H. Zhang, L. Li, T. Goradin, Hierarchically-organized, well-dispersed hydroxyapatite-coated magnetic carbon with combined organics and inorganics removal properties, Chem. Eng. J., 275 (2015) 152–159.
  36. S. Xing, Z. Zhou, Z. Ma, Y. Wu, Characterization and reactivity of Fe3O4/FeMnOx core/shell nanoparticles for methylene blue discoloration with H2O2, Appl. Catal., B, 107 (2011) 386–392.
  37. L. Liu, X. Zhang, R. Wang, J. Liu, Facile synthesis of Mn2O3 hollow and core–shell cube-like nanostructures and their catalytic properties, Superlattices Microstruct., 72 (2014) 219–229.
  38. I.G. Morozov, O.V. Belousova, D. Ortega, M.K. Mafina, M.V. Kuzntcov, Structural, optical, XPS and magnetic properties of Zn particles capped by ZnO nanoparticles, J. Alloys Compd., 633 (2015) 237–245.
  39. Z.-W. Wu, S.-L. Tyan, H.-H. Chen, J.-C.-A. Huang, Y.-C. Huang, C.-R. Lee, T.-S. Mo, Temperature-dependent photoluminescence and XPS study of ZnO nanowires grown on flexible Zn foil via thermal oxidation, Superlattices Microstruct., 107 (2017) 38–43.
  40. F. Zhuang, R. Tan, W. Shen, X. Zhang, W. Xu, W. Song, Monodisperse magnetic hydroxyapatite/Fe3O4 microspheres for removal of lead(II) from aqueous solution, J. Alloys Compd., 637 (2015) 531–537.
  41. A. Sarkar, S. Kanti Biswas, P. Pramanik, Design of a new nanostructure comprising Mesoporous ZrO2 shell and magnetite core (Fe3O4@mZrO2) and study of its phosphate ion separation efficiency, J. Mater. Chem., 20 (2010) 4417–4424.