1. M.A. Oturan, J.J. Aaron, Advanced oxidation processes in water/wastewater treatment: principles and applications. A review, Crit. Rev. Environ. Sci. Technol., 44 (2014) 2577–2641.
  2. M.A. Vishnuganth, R. Neelancherry, M. Kumar, N. Selvaraju, Carbofuran removal in continuous-photocatalytic reactor: Reactor optimization, rate-constant determination and carbofuran degradation pathway analysis, J. Environ. Sci. Health. Part B., 52 (2017) 353–360.
  3. R.K. Singh, L. Philip, S. Ramanujam, Removal of 2,4-dichlorophenoxyacetic acid in aqueous solution by pulsed corona discharge treatment: Effect of different water constituents, degradation pathway and toxicity assay, Chemosphere, 184 (2017) 207–214.
  4. C. Berberidou, V. Kitsiou, E. Kazala, D.A. Lambropoulou, A. Kouras, C.I. Kosma, T.A. Albanis, I. Poulios, Study of the decomposition and detoxification of the herbicide bentazon by heterogeneous photocatalysis: Kinetics, intermediates and transformation pathways, Appl. Catal. B., 200 (2017) 150–163.
  5. Turkish Republic Official Gazette Turkish Regulation on Human Consumption Water, Part Four, Appendix-1, Chemical Parameters (25730), 17.02.2005, 19.
  6. United States Prevention Agency (EPA), Prevention, Pesticides and Toxic Substances (7508C). Reregistration Eligibility Decision for 2,4-d, (2005), (accessed 10 November 2017).
  7. C.A. Sandoval-Carrasco, D. Ahuatzi-Chacón, J. Galíndez-Mayer, N. Ruiz-Ordaz, C. Juárez-Ramírez, F. Martínez-Jerónimo, Biodegradation of a mixture of the herbicides ametryn, and 2,4-D, chlorophenoxyacetic acid (2,4-D) in a compartmentalized biofilm reactor, Bioresour. Technol., 145 (2013) 33–36.
  8. Y. Ordaz-Guillén, C.J. Galíndez Mayer, N. Ruiz-Ordaz, C. Juárez-Ramírez, F. Santoyo-Tepole, O. Ramos-Monray, Evaluating the degradation of the herbicides picloram and 2,4-D in a compartmentalized reactive biobarrier with internal liquid recirculation, Environ. Sci. Pollut. Res., 21 (2014) 8765–8773.
  9. K. Park, J. Park, J. Kim, I.S. Kwak, Biological and molecular responses of Chironomus riparius (Diptera, Chironomidae) to herbicide 2,4-D (2,4-dichlorophenoxyacetic acid), Comp Biochem Physiol C Toxicol Pharmacol., 151 (2010) 439–446.
  10. X. Quan, J. Ma, W. Xiong, X. Wang, Bioaugmentation of halfmatured granular sludge with special microbial culture promoted establishment of 2,4-dichlorophenoxyacetic acid degrading aerobic granules, Bioprocess Biosyst. Eng., 38 (2015) 1081–1090.
  11. K. Li, J.-Q. Wu, L.-L. Jiang, L.-Z. Shen, J.-Y. Li, Z.-H. He, P. Wei, Z. Lv, M.-F. He, Developmental toxicity of 2,4-dichlorophenoxyacetic acid in zebrafish embryos, Chemosphere., 171 (2017) 40–48.
  12. S. Mekonen, R. Argaw, A. Simanesew, M. Houbraken, D. Senaeve, A. Ambelu, P. Spanoghe, Chemosphere pesticide residues in drinking water and associated risk to consumers in Ethiopia, Chemosphere, 162 (2016) 252–260.
  13. B.M. Teklu, P.I. Adriaanse, M.M.S. Ter Horst, J.W. Deneer, P.J. Van den Brink, Surface water risk assessment of pesticides in Ethiopia, Sci. Total Environ., 508 (2015) 566–574.
  14. US EPA, Health advisory: 2,4-Dichlorophenoxyacetic acid. Environmental Protection Agency, Washington, DC, (1987), (accessed on 26 August 2018).
  15. USEPA, Ground water and drinking water regulation, (2017), (accessed on 15 May 2017).
  16. N.L. Finčur, J.B. Krstić, F.S. Šibul, D.V. Šojić, V.N. Despotović, N.D. Banić, J.R. Agbaba, B.F. Abramović, Removal of alprazolam from aqueous solutions by heterogeneous photocatalysis: Influencing factors, intermediates, and products, Chem. Eng. J., 307 (2017) 1105–1115.
  17. N.A. Laoufi, F. Bentahar, Pesticide removal from water suspension by UV/TiO2 process: a parametric study, Desal. Water Treat., 52 (2014) 1947–1955.
  18. A.C. Affam, M. Chaudhuri, Degradation of pesticides chlorpyrifos, cypermethrin and chlorothalonil in aqueous solution by TiO2 photocatalysis, J. Environ. Manage., 130 (2013) 160–165.
  19. M. Qamar, M. Muneer, Comparative photocatalytic study of two selected pesticide derivatives, indole-3-acetic acid and indole-3-butyric acid in aqueous suspensions of titanium dioxide, J. Hazard. Mater., B120 (2005) 219–227.
  20. M. Yeber, E. Paul, C. Soto, Chemical and biological treatments to clean oily wastewater: optimization of the photocatalytic process using experimental design, Desal. Water Treat., 47 (2012) 295–299.
  21. M.N. Chong, Y.J. Cho, P.E. Poh, B. Jin, Evaluation of Titanium dioxide photocatalytic technology for the treatment of reactive Black 5 dye in synthetic and real greywater effluents, J Clean Prod., 89 (2015) 196–202.
  22. D.E. Santiago, J.M. Doña-Rodríguez, J. Araña, C. Fernández-Rodríguez, O. González-Díaz, J. Pérez-Peña, A.M.T. Silva, Optimization of the degradation of imazalil by photocatalysis: Comparison between commercial and lab-made photocatalysts, Appl. Catal. B., 138–139 (2013) 391–400.
  23. S.K. Deokar, S.A. Mandavgane, Rice husk ash for fast removal of 2,4-dichlorophenoxyacetic acid from aqueous solution, Adsorp. Sci. Technol., 33 (2015) 429–440.
  24. T. Lee, S. Kurata, C. Nakatsu, Y. Kamagata, Molecular analysis of bacterial community based on 16S rDNA and functional genes in activated sludge enriched with 2,4-dichlorophenoxyacetic acid (2,4-D) under different cultural conditions, Microb Ecol., 49 (2015) 151–162.
  25. N.S. Trivedi, R.A. Kharkar, S.A. Mandavgane, Utilization of cotton plant ash and char for removal of 2, 4-dichlorophenoxyacetic acid, Resource-Eff Technol., 2 (2016) 39–46.
  26. L.O. Conte, A.V. Schenone, O.M. Alfano, Photo-Fenton degradation of the herbicide 2,4-D in aqueous medium at pH conditions close to neutrality, J. Environ. Manage., 170 (2016) 60–69.
  27. M. Thrills, J. Petal, X. Domènech, Redox photodegradation of 2,4-dichlorophenoxyacetic acid over TiO2, Appl. Catal. B., 5 (1995) 377–387.
  28. H.K Singh, M. Muneer, Photodegradation of a herbicide derivative, 2,4-dichlorophenoxy acetic acid in aqueous suspensions of titanium dioxide, Res Chem Intermediate., 30 (2004) 317–329.
  29. K. Djebbar, A. Zertal, T. Sehili, Photocatalytic degradation of 2,4-dichlorophenoxyacetic acid and 4-chloro-2-methylphenoxyacetic acid in water by using TiO2, Environ. Technol., 27 (2006) 1191–1197.
  30. S. Kundu, A. Pal, A.K. Dikshit, UV ınduced degradation of herbicide 2,4-D: kinetics, mechanism and effect of various conditions on the degradation, Sep. Purif. Technol., 44 (2005) 121–129.
  31. I. Talinli, G.K. Anderson, Interference of hydrogen peroxide on the standard COD test, Water Res., 26 (1992) 107–110.
  32. N. Daneshvar, D. Salari, A. Niaei, A.R. Khataee, Photocataytic degradation of the herbicide erioglaucine in the presence of nanosized titanium dioxide: comparison and modeling of reaction kinetics, J. Environ. Sci. Health., Part B., 41 (2006) 1273–1290.
  33. H. Zúňiga-Benitez, C. Aristizábal-Ciro, G.A. Peñuela, Heterogeneous photocatalytic degradation of the endocrinedisturbing chemical benzophenone-3: Parameters optimization and by-products identification, J. Environ. Manage., 167 (2016) 246–258.
  34. E. Bazrafshan, F.K. Mostafapour, H. Faridi, M. Farzadkia, S. Shahnaz, A. Sohrabi, Removal of 2,4-dichlorophenoxyacetic acid (2,4-D) from aqueous environments using single-walled carbon nanotubes, Health Scope., 1 (2013) 39–46.
  35. C.H. Yu, C.H. Wu, T.H. Ho, P.K.A. Hong, Decolorization of C.I. Reactive Black 5 in UV/TiO2, UV/oxidant and UV/TiO2/oxidant systems: A comparative study, Chem. Eng. J., 158 (2010) 578–583.
  36. S. Bouafia-Chergui, H. Zemmouri, M. Chabani, A. Bensmaili, TiO2-photocatalyzes degradation of tetracycline: kinetic study, adsorption isotherms, mineralization and toxicity reduction, Desal. Water Treat., 57 (2016) 16670–16677.
  37. K.H. Oh, O. Tuovinen, Bacterial degradation of phenoxy herbicide mixtures 2,4-D and MCPP, Bull. Environ. Contam. Toxicol., 47 (1991) 222–229.
  38. M. Woche, N. Scheibe, W. von Tümpling, M. Schwidder, Degradation of the antiviral drug zanamivir in wastewater-The potential of a photocatalytic treatment process, Chem. Eng. J., 287 (2016) 674–679.
  39. L. Khenniche, L. Favier, A. Bouzaza, F. Fourcade, F. Aissani, A. Amrane, Photocataytic degradation of bezacryl yellow in batch reactors - feasibility of the combination of photocatalysis and a biological treatment, Environ. Technol., 36 (2015) 1–10.
  40. A. Piscopo, D. Robert, J.V. Weber, Influence of pH and chloride anion on the photocatalytic degradation of organic compounds: Part I. Effect on the benzamide and para-hydroxybenzoic acid in TiO2 aqueous solution, Appl. Catal. B., 35 (2001) 117–124.
  41. S.J. Jafari, G. Moussavi, H. Hossaini, Degradation and mineralization of diazinon pesticide in UVC and UVC/TiO2 process, Desal. Water Treat., 57 (2016) 3782–3790.
  42. R. Rajeswari, S. Kanmani, A study on degradation of pesticide wastewater by TiO2 photocatalysis, J. Sci. Ind. Res., 68 (2009) 1063–1067.
  43. L. Yahia Cherif, I. Yahiaoui, F. Aissani-Benissad, K. Madi, N. Benmehdi, F. Fourcade, A. Amrane, Heat attachment method for the immobilization of TiO2 on glass plates: application to photodegradation of basic yellow dye and optimization of operating parameters, using response surface methodology, Ind. Eng. Chem. Res., 53 (2014) 3813–3819.
  44. T.J. Kaur, A.P. Toor, R. Wanchoo, UV-assisted degradation of propiconazole in a TiO2 aqueous suspension: identification of transformation products and the reaction pathway using GC/ MS, Int. J. Environ. Anal. Chem., 95 (2015) 494–507.
  45. E.S. Elmolla, M. Chaudhuri, Photocatalytic degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution using UV/TiO2 and UV/H2O2/TiO2 photocatalysis, Desalination, 252 (2010) 46–52.
  46. M.G. Alalm, A. Tawfik, S. Ookawara, Comparison of solar TiO2 photocatalysis and solar photo-Fenton for treatment of pesticides industry wastewater: Operational conditions, kinetics, and costs, J. Water Process Eng., 8 (2015) 55–63.
  47. T. Aye, W.A. Anderson, M. Mehrvar, Photocatalytic treatment of cibacron brilliant yellow 3G-P (reactive yellow 2 textile dye), J. Environ. Sci. Health., Part A., 38 (2003) 1903–1914.
  48. N. Daneshvar, M.J. Hejazi, B. Rangarangy, A.R. Khataee, Photocatalytic degradation of an organophosphorus pesticide phosalone in aqueous suspensions of titanium dioxide, J. Environ. Sci. Health., Part B., B39 (2004) 285–296.
  49. L.-A. Lu, Y.-S. Ma, M. Kumar, J.-G. Lin, Photo-Fenton pretreatment of carbofuran-analyses via experimental design, detoxification and biodegradability enhancement, Sep. Purif. Technol., 81 (2011) 325–331.
  50. H. Dong, G. Zeng, L. Tang, C. Fan, C. Zhang, X. He, Y. He, An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures, Water Res., 1 (2015) 128–46.
  51. A. Amalraj, A. Pius, Photocatalytic degradation of monocrotophos and chlorpyrifos in aqueous solution using TiO2 and UV irradiation, J. Water Process Eng., 7 (2015) 94–101.
  52. A. Verma, N.T. Prakash, A.P. Toor, Photocatalytic degradation of herbicide isoproturon in TiO2 aqueous suspensions: study of reaction ıntermediates and degradation pathways, Environ Technol., 33 (2013) 402–409.
  53. E. Diaz, M. Cebrian, A. Bahamonde, M. Faraldos, A.F. Mohedano, J.A. Casas, J.J. Rodriguez, Degradation of organochlorinated pollutants in water by catalytic hydrodechlorination and photocatalysis, Catal. Today, 266 (2016) 168–174.
  54. S. Yahiat, F. Fourcade, S. Brosillon, A. Amrane, Photocatalysis as a pre-treatment prior to a biological degradation of cyproconazole, Desalination, 281 (2011) 61–67.
  55. E. Deletze, A. Antoniadis, V. Kitsiou, E. Kostoppulou, D. Lutic, I. Cretescu, I. Poulios, Photocatalytic treatment of colored wastewater from medical laboratories: photo-degradation of nuclear fast red, Desal. Water Treat., 57 (2016) 18897–18905.
  56. J.C. D’Oliveira, C. Minero, E. Pelizzetti, P. Pichat, Photodegradation of dichlorophenols and trichlorophenols in TiO2 aqueous suspensions: kinetic effects of the positions of the Cl atoms and identification of the intermediates, J. Photochem. Photobiol., A., 72 (1993) 26–267.
  57. B. Huang, C. Lei, C. Wei, G. Zeng, Chlorinated volatile organic compounds (Lc-VOCs) in environment-sources, potential human health impacts, and current remediation technologies, Environ. Int., 71 (2014) 118–138.
  58. E.C. Catalkaya, F. Kargi, Dehalogenation, degradation and mineralization of diuron by peroxone (peroxide/ozone) treatment, J Environ Sci Health A., 44 (2009) 630–638.
  59. A.T. Nguyen, C.T. Hsieh, R.S. Juang, Substituent effects on photodegradation of phenols in binary mixtures by hybrid H2O2 and TiO2 suspensions under UV irradiation, J Taiwan Inst Chem Eng., 62 (2016) 68–75.
  60. I. Pavlovic, C. Barriga, M.C. Hermosin, J. Cornejo, M.A. Ulibarri, Adsorption of acidic pesticides 2,4-D, clopyralid and picloram on calcined hydrotalcite, Appl. Clay Sci., 30 (2005) 125–133.
  61. D.L. Pavia, G.M. Lampman, G.S. Kriz, J.R. Vyvyan, Introduction to Spectroscopy, 4th ed., Brooks Cole Cengage Learning, USA, 2008.
  62. K. Thamaphat, P. Limsuwan, B. Ngotawornchai, Phase characterization of TiO2 powder by XRD and TEM, Kasetsart J. Nat. Sci., 42 (2008) 357–361.
  63. T. Phonkhokkong, T. Thongtem, S. Thongtem, A. Phuruangrat, W. Promnopas, Synthesis and characterization of TiO2 nanopowders for fabrication of dye sensitized solar cells, Dig. J. Nanomater Biostruct., 11 (2016) 81–90.
  64. D. Bamba, P. Atheba, D. Robert, A. Trokourey, B. Dongui, Photocatalytic degradation of the diuron pesticide, Environ. Chem. Lett., 6 (2008) 163–167.
  65. S. Khezrianjoo, H.D. Revanasiddappa, Langmuir–Hinshelwood kinetic expression for the photocatalytic degradation of metanil yellow aqueous solutions by ZnO catalyst, Chem. Sci. J., 2012 (2012) CSJ-85.
  66. J.A. Bergendahl, T.P. Thies, Fenton’s oxidation of MTBE with zerovalent ıron, Water Res., 38 (2004) 327–334.
  67. Al-Ekabi, N. Serpone, Kinetics studies in heterogeneous photocatalysis. I. Photo-catalytic degradation of chlorinated phenols in aerated aqueous solutions over titania sup-ported on a glass matrix, J. Phys. Chem., 92 (1988) 5726–5731.
  68. R.W. Matthews, Environment: Photochemical and Photocatalytic Processes. Degradation of Organic Compounds, E. Pelizzetti, M. Schiavello Eds., Photochemical Conversion and Storage of Solar Energy, Springer, Dordrecht, 1991, Doi:
  69. C.G. da Silva, J.L. Faria, Photochemical and photocatalytic degradation of an azo dye in aqueous solution by UV irradiation, J. Photochem. Photobiol., A., 155 (2003) 133–143.
  70. S.P. Kamble, S.B. Sawant, V.G. Pangarkar, Photocatalytic mineralization of phenoxyacetic acid using concentrated solar radiation and titanium dioxide in slurry photo-reactor, Chem. Eng. Res. Des., 84 (2006) 355–362.
  71. P. Nitoi, I. Oancea, L. Cristea, L.A. Constantin, G. Nechifor, Kinetics and mechanism of chlorinated aniline degradation by TiO2 photocatalysis, J. Photochem. Photobiol., A., 298 (2015) 17–23.
  72. J.R. Bolton, M.I. Stefan, Fundamental photochemical approach tı the concepts of fluence (UV dose) and electrical energy efficiency in photochemical degradation reactions, Res Chem Intermediate., 28 (2002) 857–870.
  73. J.R. Bolton, K.G. Bircher, W. Tumas, C.A. Tolman, Figures-of-merit for the technical development and application of advanced oxidation technology for both electric-and solardriven systems (IUPAC Technical Report), Pure Appl. Chem., 73 (2001) 627–637.
  74. J.C. Cardoso, G.G. Bessegato, M.V.B. Zanoni, Efficiency comparison of ozonation, photolysis, photocatalysis and photoelectrocatalysis methods in real textile wastewater decolorization, Water Res., 98 (2016) 39–46.
  75. C.R. Asha, M.A. Vishnuganth, N. Remya, N. Selvaraju, M. Kumar, Livestock wastewater treatment in batch and continuous photocatalytic systems: performance and economic analyses, Water Air Soil Pollut., 226 (2015) 132.
  76. N. Azbar, T. Yonar, K. Kestioglu, Comparison of various advanced oxidation processes and chemical treatment methods for COD and color removal from a polyester and acetate fiber dyeing effluent, Chemosphere, 55 (2004) 35–43.
  77. N. Remya, J.G. Lin, Current status of microwave application in wastewater treatment-A review, Chem. Eng. J., 166 (2011) 797–813.