References

  1. F. Karami, H. Kazemi, Spatial monitoring of groundwater salinity in drought and wet periods case study: Tabriz Plain, Geogr. Dev., 10 (2012) 21–24.
  2. E. Bashiri, J. Bashiri, F. Karimi, Investigating the recent drought effects on underground water resources in the province of Kurdistan from a quantitative and qualitative point of view (Case study: Dehgolan and Ghorveh plains), Int. Lett. Nat. Sci., 3 (2013) 7–20.
  3. R. Barzegar, A.A. Moghaddam, H. Baghban, A supervised committee machine artificial intelligent for improving DRASTIC method to assess groundwater contamination risk: a case study from Tabriz plain aquifer, Iran, Stochastic Environ. Res. Risk Assess., 30 (2016) 883–899.
  4. N.C. Mondal, V.P. Singh, V.S. Singh, V.K. Saxena, Determining the interaction between groundwater and saline water through groundwater major ions chemistry, J. Hydrol., 388 (2010) 100–111.
  5. R. Barzegar, A.A. Moghaddam, N. Kazemian, Assessment of heavy metals concentrations with emphasis on arsenic in the Tabriz plain aquifers, Iran. Environ. Earth Sci., 74 (2015) 297–313.
  6. R. Barzegar, A.A. Moghaddam, M. Najib, N. Kazemian, J. Adamowski, Characterization of hydrogeologic properties of the Tabriz plain multilayer aquifer system, NW Iran. Arab. J. Geosci., 9 (2016) 1–17.
  7. M. Jeihouni, A. Toomanian, S.K. Alavipanah, S. Hamzeh, Quantitative assessment of Urmia Lake water using spaceborne multisensor data and 3D modeling, Environ. Monit. Assess., 189 (2017) 1–15.
  8. E. Lytras, Developing models for lake management, Desalination, 213 (2007) 129–134.
  9. S.J. Moe, S. Haande, R.-M. Couture, Climate change, cyanobacteria blooms and ecological status of lakes: a Bayesian network approach, Ecol. Model., 337 (2016) 330–347.
  10. S. Jalili, S.A. Hamidi, R.N. Ghanbari, Climate variability and anthropogenic effects on Lake Urmia water level fluctuations, northwestern Iran, Hydrol. Sci. J., 61 (2017) 1759–1769.
  11. B. Amirataee, K. Zeinalzadeh, Trends analysis of quantitative and qualitative changes in groundwater with considering the autocorrelation coefficients in west of Lake Urmia, Iran, Environ. Earth Sci., 75 (2016) 1–10.
  12. F.G. Hamzekhani, B. Saghafian, S. Araghineja, Environmental management in Urmia Lake: thresholds approach, Int. J. Water Resour. Develop., 32 (2016) 77–88.
  13. M. abbaspour, A. nazaridoust, Determination of environmental water requirements of Lake Urmia, Iran: an ecological approach, Int. J. Environ. Stud., 64 (2007) 161–169.
  14. A.A. Mohammadi, K. Yaghmaeian, F. Hossein, R. Nabizadeh, M.H. Dehghani, J.K. Khaili, A.H. Mahvi, Temporal and spatial variation of chemical parameter concentration in drinking water resources of Bandar-e Gaz City using Geographic Information System, Desal. Wat. Treat., 68 (2017) 170–176.
  15. J. Suh, S.M. Kim, H. Yi, Y. Choi, An overview of GIS-based modeling and assessment of mining-induced hazards: soil, water, and forest, Int. J. Environ. Res. Public Health, 14 (2017) 1463 doi: 10.3390/ijerph14121463.
  16. H. Chen, S. Guo, C. Xu, V. Singh, Historical temporal trends of hydro-climatic variables and runoff response to climate variability and their relevance in water resource management in the Hanjiang basin, J. Hydrol., 344 (2007) 171–184.
  17. S. Yue, P. Pilon, B. Phinney, Canadian streamflow trend detection: impacts of serial and cross-correlation, Hydrol. Sci. J., 48 (2003) 51–63.
  18. M. Kousari, H. Ahani, H. Hakimelahi, An investigation of near surface wind speed trends in arid and semiarid regions of Iran, Theor. Appl. Climatol., 114 (2013) 1–16.
  19. H.B. Mann, Non-parametric tests against trend, Econometrica, 13 (1945) 163–171.
  20. M.G. Kendall, Rank Correlation Methods, 4th ed., London, 1975.
  21. K.H. Hamed, A.R. Rao, A modified Mann-Kendall trend test for autocorrelated data, J. Hydrol., 204 (1998) 182–196.
  22. P.K. Sen, Estimates of the regression coefficient based on Kendall’s tau, J. Am. Stat. Assoc, 63 (1968) 1379–1389.
  23. H. Theil, A rank-invariant method of linear and polynomial regression analysis, Proceedings of Koninklijke Nederlandse Akademie van Wetenschappen 53 (1950) 1397–1412.
  24. K. Takeuchi, H. Ishidaira, Monotonic trend and step changes in Japanese precipitation, J. Hydrol., 279 (2003) 144–150.
  25. J. Cuchi, D. Chinarro, J. Villarroel, Linear system techniques applied to the Fuenmayor Karst Spring, Huesca (Spain), Environ. Earth Sci., 73 (2014) 1049–1060.
  26. S. Jalili, I. Kirchner, D.M. Livingstonec, S. Morida, The influence of large-scale atmospheric circulation weather types on variations in the water level of Lake Urmia, Iran, Int. J. Climatol., 32 (2012) 1990–1996.
  27. A. Baghvand, T. Nasrabadi, G. Bidhendi, A. Vosoogh, A. Karbassi, N. Mehrdadi, Groundwater quality degradation of an aquifer in Iran central desert, Desalination, 260 (2010) 264–275.
  28. R. Dehghanzadeh, N.S. Hir, J.S. Sis, H. Taghipour, Integrated assessment of spatial and temporal variations of Groundwater Quality in the Eastern Area of Urmia Salt Lake Basin Using Multivariate Statistical Analysis, Water Resour. Manage., 29 (2015) 1351–1364.