1. M. Qasim, N.A. Darwish, S. Sarp, N. Hilal, Water desalination by forward (direct) osmosis phenomenon: a comprehensive review, Desalination, 374 (2015) 47–69.
  2. M. Ghanbari, D. Emadzadeh, W.J. Lau, H. Riazi, D. Almasi, A.F. Ismail, Minimizing structural parameter of thin film composite forward osmosis membranes using polysulfone/halloysite nanotubes as membrane substrates, Desalination, 377 (2016) 152–162.
  3. Q. Ge, M. Ling, T.-S. Chung, Draw solutions for forward osmosis processes: developments, challenges, and prospects for the future, J. Membr. Sci., 442 (2013) 225–237
  4. Y. Cai, X.M. Hu, A critical review on draw solutes development for forward osmosis, Desalination, 391 (2016) 16–29.
  5. C.J. Orme, A.D. Wilson, 1-Cyclohexylpiperidine as a thermolytic draw solute for osmotically driven membrane processes, Desalination, 371 (2015) 126–133.
  6. A. Achilli, T.Y. Cath, A.E. Childress, Selection of inorganicbased draw solutions for forward osmosis applications, J. Membr. Sci., 364 (2010) 233–241.
  7. J. Huang, Q. Long, S. Xiong, L. Shen, Y. Wang, Application of poly (4-styrenesulfonic acid-co-maleic acid) sodium salt as novel draw solute in forward osmosis for dye-containing wastewater treatment, Desalination, 421 (2017) 40–46.
  8. Q. Ge, J. Su, G.L. Amy, T.-S. Chung, Exploration of polyelectrolytes as draw solutes in forward osmosis processes, Water Res., 46 (2012) 1318–1326.
  9. T. Mishra, S. Ramola, A.K. Shankhwar, R.K. Srivastava, Use of synthesized hydrophilic magnetic nanoparticles (HMNPs) in forward osmosis for water reuse, Water Sci. Technol. Water Supply, 16 (2016) 229–236.
  10. M.L. Stone, C. Rae, F.F. Stewart, A.D. Wilson, Switchable polarity solvents as draw solutes for forward osmosis, Desalination, 312 (2013) 124–129.
  11. N. Sato, Y. Sato, S. Yanase, Forward osmosis using dimethyl ether as a draw solute, Desalination, 415 (2017) 104–114.
  12. A.A. Monjez, H.B. Mahood, A.N. Campbell, Regeneration of dimethyl ether as a draw solute in forward osmosis by utilising thermal energy from a solar pond, Desalination, 415 (2017) 104–114.
  13. C.H. Tan, H.Y. Ng, A novel hybrid forward osmosis– nanofiltration (FO-NF) process for seawater desalination: draw solution selection and system configuration, Desal. Wat. Treat., 13 (2010) 356–361.
  14. Q. Ge, J. Su, T.-S. Chung, G. Amy, Hydrophilic superparamagnetic nanoparticles: synthesis, characterization, and performance in forward osmosis processes, Ind. Eng. Chem. Res., 50 (2011) 382–388.
  15. R. Alnaizy, A. Aidan, M. Qasim, Copper sulfate as draw solute in forward osmosis desalination, J. Environ. Chem. Eng., 1 (2013) 424–430.
  16. M. Xie, L.D. Nghiem, W.E. Price, M. Elimelech, A forward osmosis-membrane distillation hybrid process for direct sewer mining: system performance and limitations, Environ. Sci. Technol., 47 (2013) 13486–13493.
  17. Y. Cai, Responsive Materials as Draw Agents for Forward Osmosis Desalination, PhD thesis, School of Materials Science and Engineering, Nanyang Technological University, Republic of Singapore, 2016.
  18. R. Ou, Y. Wang, H. Wang, T. Xu, Thermo-sensitive polyelectrolytes as draw solutions in forward osmosis process, Desalination, 318 (2013) 48–55.
  19. D. Zhao, P. Wang, Q. Zhao, N. Chen, X. Lu, Thermo-responsive copolymer-based draw solution for seawater desalination in a combined process of forward osmosis and membrane distillation, Desalination, 348 (2014) 26–32.
  20. Y. Cai, W. Shen, J. Wei, T.H. Chong, R. Wang, W.B. Krantz, A.G. Fane, X. Hu, Energy-efficient desalination by forward osmosis using responsive ionic liquid draw solutes, Energy Environ. Sci., 1 (2015) 341–347.
  21. A. Kokorin, Ed., Ionic Liquids: Theory, Properties, New Approaches, In Tech, United Kingdom, 2011, ISBN 978-953-307-349-1.
  22. Y. Fukaya, K. Sekikawa, K. Murata, N. Nakamura, H. Ohno, Miscibility and phase behavior of water-dicarboxylic acid type ionic liquid mixed systems, Chem. Commun., 29 (2007) 3089–3091.
  23. J. Vila, P. Ginés, E. Rilo, O. Cabeza, L.M. Varel, Great increase of the electrical conductivity of ionic liquids in aqueous solutions, Fluid Phase Equilib., 247 (2006) 32–39.
  24. Y. Kohno, H. Ohno, Ionic liquid/water mixtures: from hostility to conciliation, Chem. Commun., 48 (2012) 7119–7130.
  25. Y. Zhong, X. Feng, W. Chen, X. Wang, K.-W. Huang, Y. Gnanou, Z. Lai, Using UCST ionic liquid as a draw solute in forward osmosis to treat high-salinity water, Environ. Sci. Technol., 50 (2016) 1039–1045.
  26. R. Wang, W. Leng, Y. Gao, L. Yu, Microemulsion-like aggregation behaviour of an LCST-type ionic liquid in water, RSC Adv., 4 (2014) 14055–14062
  27. T. Morita, K. Miki, A. Nitta, H. Ohgi, P. Westh, Effects of constituent ions of a phosphonium-based ionic liquid on molecular organization of H2O as probed by 1-propanol: tetrabutylphosphonium and trifluoroacetate ions, Phys. Chem. Chem. Phys., 17 (2015) 22170–22178
  28. S.-Y. Lin, K.-S. Chen, R.-C. Liang, Thermal micro ATR/FT-IR spectroscopic system for quantitative study of the molecular structure of poly(N-isopropylacrylamide) in water, Polymer, 40 (1999) 2619–2624
  29. J. Grdadolnik, F. Merzel, F. Avbelj, Origin of hydrophobicity and enhanced water hydrogen bond strength near purely hydrophobic solutes, Proc. Natl. Acad. Sci. U.S.A. Availabe at:
  30. H.K. Woo, X.B. Wang, L.S. Wang, K.C. Lau, Probing the lowbarrier hydrogen bond in hydrogen maleate in the gas phase: a photoelectron spectroscopy and ab initio study, J. Phys. Chem. A, 109 (2005) 10633–10637.
  31. C.L. Perrin, J.D. Thoburn, Symmetries of hydrogen bonds in monoanions of dicarboxylic acids, J. Am. Chem. Soc., 114 (1992) 8559–8565.