1. E.S. Chen, T.B. Bridgeman, The reduction of Chlorella vulgaris concentrations through UV-C radiation treatments: a naturebased solution (NBS), Environ. Res., 156 (2017) 183–189.
  2. I. Sanseverino, D.S. Conduto Atónio, L. Pozzoli, S. Dobricic, T. Lettieri, Algal Bloom and Its Economic Impact, Publications Office of the European Union, Italy, 2016.
  3. S. Gao, J. Yang, J. Tian, F. Ma, G. Tu, M. Du, Electro-coagulationflotation process for algae removal, J. Hazard. Mater., 177 (2010) 336–343.
  4. S. Monasterio, F. Dessì, M. Mascia, A. Vacca, S. Palmas, Electrochemical removal of Microcystis aeruginosa in a fixed bed reactor, Chem. Eng. Trans., 41 (2014) 163–168.
  5. J.J. Chen, H.H. Yeh, I.C. Tseng, Effect of ozone and permanganate on algae coagulation removal – pilot and bench scale tests, Chemosphere, 74 (2009) 840–846.
  6. M. Ma, R. Liu, H. Liu, J. Qu, Chlorination of Microcystis aeruginosa suspension: cell lysis, toxin release and degradation, J. Hazard. Mater., 217–218 (2012) 279–285.
  7. B. Mukherdee, P.N. Pandey, S.N. Singh, Mathematical modelling and system analysis of inorganic carbon in the aquatic environment, Ecol. Model., 152 (2002) 129–143.
  8. J.L. Acero, E. Rodriguez, J. Meriluoto, Kinetics of reactions between chlorine and the cyanobacterial toxins microcystins, Water Res., 39 (2005) 1628–1638.
  9. L. Ho, G. Onstad, U. von Gunten, S. Rinck-Pfeiffer, K. Craig, G. Newcombe, Differences in the chlorine reactivity of four microcystin analogues, Water Res., 40 (2006) 1200–1209.
  10. Y. Gao, J. Zhang, X. Bai, S. You, Monolithic ceramic electrode for electrochemical deactivation of Microcystis aeruginosa, Electrochim. Acta, 259 (2018) 410–418.
  11. Y.L. Zhang, B.P. Han, B. Yan, Q.M. Zhou, Y. Liang, Genotoxicity of disinfection by-products (DBPs) upon chlorination of nine different freshwater algal species at variable reaction time, Aqua, 63 (2014) 12–22.
  12. A. Reis, Die anodische Oxidation als Inaktivator pathogener Substanzen und Prozesse, Klin. Wschr., 29 (1951) 484–485.
  13. H. Bergmann, T. Iourtchouk, K. Schops, K. Bouzek, New UV irradiation and direct electrolysis-promising methods for water disinfection, Chem. Eng. J., 85 (2002) 111–117.
  14. M.I. Kerwick, S.M. Reddyb, A.H.L. Chamberlain, D.M. Holt, Electrochemical disinfection, an environmentally acceptable method of drinking water disinfection?, Electrochim. Acta, 50 (2005) 5270–5277.
  15. H.F. Diao, X.Y. Li, J.D. Gu, H.C. Shi, Z.M. Xie, Electron microscopic investigation of the bactericidal action of electrochemical disinfection in comparison with chlorination, ozonation and Fenton reaction, Process. Biochem., 39 (2004) 1421–1426.
  16. X. Huang, Y. Qu, C.A. Cid, C. Finke, M.R. Hoffmann, K. Lim, S.C. Jiang, Electrochemical disinfection of toilet wastewater using wastewater electrolysis cell, Water Res., 92 (2016) 164–172.
  17. A. Kraft, M. Stadelmann, M. Blaschke, D. Kreysig, B. Sandt, F. Schröder, J. Rennau, Electrochemical water disinfection Part I: Hypochlorite production from very dilute chloride solutions, J. Appl. Electrochem., 29 (1999) 859–866.
  18. D. Ghernaout, A. Badis, A. Kellil, B. Ghernaout, Application of electrocoagulation in Escherichia coli culture and two surface waters, Desalination, 219 (2008) 118–125.
  19. A. Cano, P. Cañizares, C. Barrera-Díaz, C. Sáez, M.A. Rodrigo, Use of conductive-diamond electrochemical-oxidation for the disinfection of several actual treated wastewaters, Chem. Eng. J., 211–212 (2012) 463–469.
  20. D. Ghernaout, M.W. Naceur, A. Souabed, On the dependence of chlorine by-products generated species formation of the electrode material and applied charge during electrochemical water treatment, Desalination, 270 (2011) 9–22.
  21. A. Vacca, M. Mascia, S. Palmas, A. Da Pozzo, Electrochemical treatment of water containing chlorides under non ideal flow conditions with BDD anodes, J. Appl. Electrochem., 41 (2011) 1087–1097.
  22. M. Zhou, H. Särkkä, M. Sillanpää, A comparative experimental study on methyl orange degradation by electrochemical oxidation on BDD and MMO electrodes, Sep. Purif. Technol., 78 (2011) 290–297.
  23. B. Bakheet, M.A. Islam, J. Beardall, X. Zhang, D. McCarthy, Electrochemical inactivation of Cylindrospermopsis raciborskii and removal of the cyanotoxin cylindrospermopsin, J. Hazard. Mater., 344 (2018) 241–248.
  24. W. Liang, K. Wang, L. Chen, L. Ruan, L. Sui, Variation of algal viability during electrochemical disinfection using Ti/RuO2 electrodes, Water Sci. Technol., 64 (2011) 162–170.
  25. M. Mascia, A. Vacca, S. Palmas, Electrochemical treatment as a pre-oxidative step for algae removal using Chlorella vulgaris as a model organism and BDD anodes, Chem. Eng. J., 219 (2013) 512–519.
  26. X. Wang, P. Xiang, Y. Zhang, Y. Wan, H. Lian, The inhibition of Microcystis aeruginosa by electrochemical oxidation using boron-doped diamond electrode, Environ. Sci. Pollut. Res., 25 (2018) 20631–20639.
  27. J. Locker, P. Fitzgerald, D. Sharp, Antibacterial validation of electrogenerated hypochlorite using carbon-based electrodes, Lett. Appl. Microbiol., 59 (2014) 636–641.
  28. J. Saha, S.K. Gupta, An endeavor towards competitive electrochlorination by comparing the performance of easily affordable carbon electrodes with platinum, Chem. Eng. Commun., 204 (2017) 1357–1368.
  29. S. Hostin, P. Benedekovič, A. Michalíková, Chlorine production for water disinfection by the means of photovoltaic panels, Nova Biotechnol. Chim. -Supplement, 9 (2009) 1–6.
  30. I. Pouneva, Evaluation of algal culture viability and physiological state by fluorescent microscopic methods, Bulg. J. Plant. Physiol., 23 (1997) 67–76.
  31. M. Imase, Y. Ohko, M. Takeuchi, S. Hanada, Estimating the viability of Chlorella exposed to oxidative stresses based around photocatalysis, Int. Biodeterior. Biodegrad., 78 (2013) 1–6.
  32. M.L.L. Nollet, L.S.P. De Gelder, Handbook of Water Analysis, CRC Press, New York, 2007.
  33. H. Särkkä, M. Vepsäläonen, M. Pulliainen, M. Sillanpää, Electrochemical inactivation of paper mill bacteria with mixed metal oxide electrode, J. Hazard. Mater., 156 (2008) 208–213.
  34. E. Poelman, M. De Pauw, B. Jeurissen, Potential of electrolytic flocculation for recovery of micro-algae, Resour. Conserv. Recycl., 19 (1997) 1–10.
  35. C. Rioboo, J.E. O‘Connor, R. Prado, C. Herrero, A. Cid, Cell proliferation alterations in Chlorella cells under stress conditions, Aquat. Toxicol., 94 (2009) 229–237.
  36. M. Valica, S. Hostin, Electrochemical treatment of water contaminated with methyl orange, Nova Biotechnol. Chim., 15 (2016) 55–64.
  37. C.G. Alfafara, K. Nakano, N. Nomura, T. Igarashi, M. Matsumura, Operating and scale-up factors for the electrolytic removal of algae from eutrophied lakewater, J. Chem. Technol. Biotechnol., 77 (2002) 871–876.
  38. Y. Xu, Y. Yang, M. Ou, Y. Wang, J. Jia, Study of Microcystis aeruginosa inhibition by electrochemical method, Biochem. Eng. J., 36 (2007) 215–220.
  39. W. Liang, J. Qu, L. Chen, H. Liu, P. Lei, Inactivation of Microcystis aeruginosa by continuous electrochemical cycling process in tube using Ti/RuO2 electrodes, Environ. Sci. Technol., 39 (2005) 4633–4639.
  40. L. Lin, C. Feng, Q. Li, M. Wu, L. Zhao, Effects of electrolysis by low-amperage electric current on the chlorophyll fluorescence characteristics of Microcystis aeruginosa, Environ. Sci. Pollut. Res., 22 (2015) 14932–14939.
  41. H. Bergmann, J. Rollin, Product and by-product formation in laboratory studies on disinfection electrolysis of water using boron-doped diamond anodes, Catal. Today, 124 (2007) 198–203.
  42. A.M. Polcaro, A. Vacca, M. Mascia, S. Palmas, J. Rodiguez Ruiz, Electrochemical treatment of waters with BDD anodes: kinetics of the reactions involving chlorides, J. Appl. Electrochem., 39 (2009) 2083–2092.
  43. C. Comninellis, A. Nerini, Anodic oxidation of phenol in the presence of NaCl for wastewater treatment, J. Appl. Electrochem., 25 (1995) 23–28.
  44. G. Chen, Electrochemical technologies in wastewater treatment, Sep. Purif. Technol., 38 (2004) 11–41.
  45. L. Wang, M. Bassiri, R. Najafi, K. Najafi, J. Yang, B. Khosrovi, W. Hwong, E. Barati, B. Belisle, C. Celeri, M. Robson, Hypochlorous acid as a potential wound care agent: Part I. Stabilized hypochlorous acid: a component of the inorganic armamentarium of innate immunity, J. Burns Wounds, 6 (2007) e5.
  46. R. Daghrir, L. Igounet, S.K. Brar, P. Drogui, Novel electrochemical method for the recovery of lipids from microalgae for biodiesel production, J. Taiwan Inst. Chem. Eng., 45 (2014) 153–162.
  47. M. Mascia, S. Monasterio, A. Vacca, S. Palmas, Electrochemical treatment of water containing Microcystis aeruginosa in a fixed bed reactor with three-dimensional conductive diamond anodes, J. Hazard. Mater., 319 (2016) 111–120.
  48. H.D. Al-Hamaiedeh, Effect of electrolyte components on electrochemical generation and disinfection efficiency of active chlorine, Desal. Wat. Treat., 12 (2009) 369–374.
  49. A.C. Ndjomgoue-Yossa, C.P. Nanseu-Njiki, I.M. Kengne, E. Ngameni, Effect of electrode material and supporting electrolyte on the treatment of water containing Escherichia coli by electrocoagulation, Int. J. Environ. Sci. Technol., 12 (2015) 2103–2110.
  50. J. Basiri Parsa, M. Golmirz, M. Abbasi, Degradation of azo dye C.I. Acid Red 18 in aqueous solution by ozone-electrolysis process, J. Ind. Eng. Chem., 20 (2014) 689–694.
  51. J. Sun, J. Wang, X. Pan, H. Yuan, A new treatment strategy for inactivating algae in ballast water based on multi-trial injections of bhlorine, Int. J. Mol. Sci., 16 (2015) 13158–13171.
  52. M.E.H. Bergmann, In: C. Comninellis, G. Chen, Electrochemistry for the Environment, Springer, New York, 2010, pp. 163–204.