1. D. Borah, M. Bera, Watershed-scale hydrologic and nonpointsource pollution models: review of mathematical bases, Trans. ASAE, 46 (2003) 1553.
  2. R. Jamieson, R. Gordon, D. Joy, H. Lee, Assessing microbial pollution of rural surface waters: a review of current watershed scale modeling approaches, Agric. Water Manage., 70 (2004) 1–17.
  3. E.G. Bekele, H.V. Knapp, Watershed modeling to assessing impacts of potential climate change on water supply availability, Water Resour. Manage., 24 (2010) 3299–3320.
  4. K. Price, Effects of watershed topography, soils, land use, and climate on baseflow hydrology in humid regions: a review, Prog. Phys. Geogr., 35 (2011) 465–492.
  5. C. Wellen, A.-R. Kamran-Disfani, G.B. Arhonditsis, Evaluation of the current state of distributed watershed nutrient water quality modeling, Environ. Sci. Technol., 49 (2015) 3278–3290.
  6. K.H. Cho,Y.A. Pachepsky, J.H. Kim, J.-W. Kim, M.-H. Park, The modified SWAT model for predicting fecal coliforms in the Wachusett Reservoir Watershed, USA, Water Res., 46 (2012) 4750–4760.
  7. M. Geza, J.E. McCray, Effects of soil data resolution on SWAT model stream flow and water quality predictions, J. Environ. Manage., 88 (2008) 393–406.
  8. I. Chaubey, A. Cotter, T. Costello, T. Soerens, Effect of DEM data resolution on SWAT output uncertainty, Hydrol. Process, 19 (2005) 621–628.
  9. J.-M. Faurès, D. Goodrich, D.A. Woolhiser, S. Sorooshian, Impact of small-scale spatial rainfall variability on runoff modeling, J. Hydrol., 173 (1995) 309–326.
  10. M. Yu, X. Chen, L. Li, A. Bao, M.J. De la Paix, Streamflow simulation by SWAT using different precipitation sources in large arid basins with scarce raingauges, Water Resour. Manage., 25 (2011) 2669.
  11. V. Neary, E. Habib, M. Fleming, Hydrologic modeling with NEXRAD precipitation in middle Tennessee, J. Hydrol. Eng., 9 (2004) 339–349.
  12. L. Kalin, M.M. Hantush, Hydrologic modeling of an eastern Pennsylvania watershed with NEXRAD and rain gauge data, J. Hydrol. Eng., 11 (2006) 555–569.
  13. S. Eleuch, A. Carsteanu, K. Bâ, R. Magagi, K. Goïta, C. Diaz, Validation and use of rainfall radar data to simulate water flows in the Rio Escondido basin, Stochastic Environ. Res. Risk Assess., 24 (2010) 559–565.
  14. A. Elhassan, H. Xie, A.A. Al-othman, J. Mcclelland, H.O. Sharif, Water quality modelling in the San Antonio River Basin driven by radar rainfall data, Geomatics, Geomat. Nat. Hazards Risk, 7 (2016) 953–970.
  15. R. Jayakrishnan, R. Srinivasan, C. Santhi, J. Arnold, Advances in the application of the SWAT model for water resources management, Hydrol. Process., 19 (2005) 749–762.
  16. P.-A. Versini, Use of radar rainfall estimates and forecasts to prevent flash flood in real time by using a road inundation warning system, J. Hydrol., 416 (2012) 157–170.
  17. S. Rozalis, E. Morin, Y. Yair, C. Price, Flash flood prediction using an uncalibrated hydrological model and radar rainfall data in a Mediterranean watershed under changing hydrological conditions, J. Hydrol., 394 (2010) 245–255.
  18. J.P. Looper, B.E. Vieux, An assessment of distributed flash flood forecasting accuracy using radar and rain gauge input for a physics-based distributed hydrologic model, J. Hydrol., 412 (2012) 114–132.
  19. W. Yu, E. Nakakita, S. Kim, K. Yamaguchi, Improvement of rainfall and flood forecasts by blending ensemble NWP rainfall with radar prediction considering orographic rainfall, J. Hydrol., 531 (2015) 494–507.
  20. J.G. Arnold, R. Srinivasan, R.S. Muttiah, J.R. Williams, Large area hydrologic modeling and assessment part I: model development, JAWRA, 34 (1998) 73–89.
  21. M. Gitau, T. Veith, W. Gburek, Farm–level optimization of BMP placement for cost–effective pollution reduction, Trans. ASAE, 47 (2004) 1923.
  22. K.C. Abbaspour, J. Yang, I. Maximov, R. Siber, K. Bogner, J. Mieleitner,J . Zobrist, R. Srinivasan, Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT, J. Hydrol., 333 (2007) 413–430.
  23. J.-K. Lee, J.-H. Kim, M.-K. Suk, Application of bias correction methods to improve the accuracy of quantitative radar rainfall in Korea, Atmos. Meas. Tech., 8 (2015) 4011–4047.
  24. M.D. McKay, R.J. Beckman, W.J. Conover, Comparison of three methods for selecting values of input variables in the analysis of output from a computer code, Technometrics, 21 (1979) 239–245.
  25. J.E. Nash, J.V. Sutcliffe, River flow forecasting through conceptual models part I—A discussion of principles, J. Hydrol., 10 (1970) 282–290.
  26. R.H. McCuen, Z. Knight, A.G. Cutter, Evaluation of the Nash– Sutcliffe efficiency index, J. Hydrol. Eng., 11 (2006) 597–602.
  27. H.V. Gupta, S. Sorooshian, P.O. Yapo, Status of automatic calibration for hydrologic models: comparison with multilevel expert calibration, J. Hydrol. Eng., 4 (1999) 135–143.
  28. F. Marra, E.I. Nikolopoulos, J.D. Creutin, M. Borga, Radar rainfall estimation for the identification of debris-flow occurrence thresholds, J. Hydrol., 519 (2014) 1607–1619.
  29. K. Price, S.T. Purucker, S.R. Kraemer, J.E. Babendreier, C.D. Knightes, Comparison of radar and gauge precipitation data in watershed models across varying spatial and temporal scales, Hydrol. Process, 28 (2014) 3505–3520.
  30. D.N. Moriasi, J.G. Arnold, M.W. Van Liew, R.L. Bingner, R.D. Harmel, T.L. Veith, Model evaluation guidelines for systematic quantification of accuracy in watershed simulations, Trans. ASABE, 50 (2007) 885–900.
  31. D. Zhang, X. Chen, H. Yao, B. Lin, Improved calibration scheme of SWAT by separating wet and dry seasons, Ecol. Modell., 301 (2015) 54–61.
  32. K. Price, S.T. Purucker, S.R. Kraemer, J.E. Babendreier, Tradeoffs among watershed model calibration targets for parameter estimation, Water Resour. Res., 48 (2012) 10.
  33. N. Kannan, S. White, F. Worrall, M. Whelan, Hydrological modelling of a small catchment using SWAT-2000–Ensuring correct flow partitioning for contaminant modelling, J. Hydrol., 334 (2007) 64–72.
  34. M. Larose, G. Heathman, L. Norton, B. Engel, Hydrologic and atrazine simulation of the Cedar Creek watershed using the SWAT model, J. Environ. Qual., 36 (2007) 521–531.
  35. A. Stehr, P. Debels, F. Romero, H. Alcayaga, Hydrological modelling with SWAT under conditions of limited data availability: evaluation of results from a Chilean case study, Hydrol. Sci. J., 53 (2008) 588–601.
  36. L.-j. Qiu, F.-l. Zheng, R.-s. Yin, SWAT-based runoff and sediment simulation in a small watershed, the loessial hilly-gullied region of China: capabilities and challenges, Int. J. Sediment Res., 27 (2012) 226–234.
  37. J. Moon, R. Srinivasan, J. Jacobs, Stream flow estimation using spatially distributed rainfall in the Trinity River basin, Texas, Trans. ASAE, 47 (2004) 1445.
  38. G. Di Baldassarre, A. Montanari, Uncertainty in river discharge observations: a quantitative analysis, Hydrol. Earth Syst. Sci., 13 (2009) 913.
  39. D.M. Thomas, M.A. Benson. Generalization of Streamflow Characteristics from Drainage-Basin Characteristics, US Government Printing Office Washington, D.C., 1970.
  40. K. Eng, P. Milly, Relating low‐flow characteristics to the base flow recession time constant at partial record stream gauges, Water Resour. Res., 43 (2007) 1.
  41. H. Li, M. Sivapalan, F. Tian, Comparative diagnostic analysis of runoff generation processes in Oklahoma DMIP2 basins: the Blue River and the Illinois River, J. Hydrol., 418 (2012) 90–109.