References

  1. H. Ye, Y. Wang, X. Zhang, Z. Zhang, B. Song, Polyurethane membrane with a cyclodextrin-modified carbon nanotube for pervaporation of phenol/water mixture, J. Polym. Eng., 37 (2017) 449–459.
  2. M.A. Hararah, K.A. Ibrahim, A.H. Al-Muhtaseb, R.I. Yousef, A. Abu-Surrah, A. Qatatsheh, Removal of phenol from aqueous solutions by adsorption onto polymeric adsorbents, J. Appl. Polym. Sci., 117 (2010) 1908–1913.
  3. H. Fan, Q. Shi, H. Yan, S. Ji, J. Dong, G. Zhang, Simultaneous spray self-assembly of highly loaded ZIF-8-PDMS nanohybrid membranes exhibiting exceptionally high biobutanolpermselective pervaporation, Angew. Chem. Int. Ed., 53 (2014) 5578–5582.
  4. G. Liu, W. Wei, W. Jin, Pervaporation membranes for biobutanol production, ACS Sustainable Chem. Eng., 2 (2014) 546–560.
  5. X. Lin, L. Xiong, G. Qi, Using butanol fermentation wastewater for biobutanol production after removal of inhibitory compounds by micro/mesoporous hyper-cross-linked polymeric adsorbent, ACS Sustainable Chem. Eng., 3 (2015) 702–709.
  6. H. Ye, X. Zhang, Z. Zhang, B. Song, W. Song, Application of polyurethane membrane with surface modified ZSM-5 for pervaporation of phenol/water mixture, J. Polym. Eng., 37 (2017) 777–784.
  7. P.M. Budd, B.S. Ghanem, S. Makhseed, N.B. McKeown, K.J. Msayib, C.E. Tattershall, Polymers of intrinsic microporosity (PIMs): robust, solution-processable, organic nanoporous materials, Chem. Commun., 2 (2004) 230–231.
  8. N.B. McKeown, P.M. Budd, Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage, Chem. Soc. Rev., 35 (2006) 675–683.
  9. N.B. McKeown, P.M. Budd, Exploitation of intrinsic microporosity in polymer-based materials, Macromolecules, 43 (2010) 5163–5176.
  10. N.B. McKeown, S. Hanif, K. Msayib, C.E. Tattershall, P.M. Budd, Porphyrin-based nanoporous network polymers, Chem. Commun., 23 (2002) 2782–2783.
  11. N. Du, M.M. Cin, I. Pinnau, A. Nicalek, G.P. Robertson, M.D. Guiver, Azide-based cross-linking of polymers of intrinsic microporosity (PIMs) for condensable gas separation, Macromol. Rapid Commun., 32 (2011) 631–636.
  12. P.M. Budd, K.J. Msayib, C.E. Tattershall, B.S. Ghanem, K.J. Reynolds, N.J. Mckeown, D. Fritsch, Gas separation membranes from polymers of intrinsic microporosity, J. Membr. Sci., 251 (2005) 263–269.
  13. S. Thomas, I. Pinnau, N. Du, M. Guiver, Hydrocarbon/hydrogen mixed-gas permeation properties of PIM-1, an amorphous microporous spirobisindane polymer, J. Membr. Sci., 338 (2009) 1–4.
  14. X.M. Wu, Q.G. Zhang, F. Soyekwo, Q.L. Liu, A.M. Zhu, Pervaporation removal of volatile organic compounds from aqueous solutions using the highly permeable PIM-1 membrane, AIChE J., 62 (2016) 842–851.
  15. S.V. Adymkanov, Y.P. Yampol’Skii, A.M. Polyakov, P.M. Budd, K.J. Reynolds, N.B. McKeown, K.J. Msayib, Pervaporation of alcohols through highly permeable PIM-1 polymer films, Polym. Sci. Ser. A Polym. Phys., 50 (2008) 444–450.
  16. P.M. Budd, E.S. Elabas, B.S. Ghanem, S. Makhseed, N.B. McKeown, K.J. Msayib, C.E. Tattershall, D. Wang, Solutionprocessed, organophilic membrane derived from a polymer of intrinsic microporosity, Adv. Mater., 16 (2004) 456–459.
  17. L. Gao, M. Alberto, P. Gorgojo, G. Szekely, P.M. Budd, High-flux PIM-1/PVDF thin film composite membranes for 1-butanol/water pervaporation, J. Membr. Sci., 529 (2017) 207–214.
  18. M.M. Khan, G. Bengtson, S. Shishatskiy, B.N. Gacal, Md.M. Rahman, S. Neumann, V. Filiz, V. Abetz, Cross-linking of polymer of intrinsic microporosity (PIM-1) via nitrene reaction and its effect on gas transport property, Eur. Polym. J., 49 (2013) 4157–4166.
  19. B. Satilmis, M.N. Alnajrani, P.M. Budd, Hydroxyalkylaminoalkylamide PIMs: selective adsorption by ethanolamine- and diethanolamine-modified PIM-1, Macromolecules, 48 (2015) 5663–5669.
  20. H. Zhao, Q. Xie, X. Ding, J. Chen, M. Hua, X. Tan, Y. Zhang, High performance post-modified polymers of intrinsic microporosity (PIM-1) membranes based on multivalent metal ions for gas separation, J. Membr. Sci., 514 (2016) 305–312.
  21. C.R. Mason, M.G. Buonomenna, G. Golemme, P.M. Budd, F. Galiano, A. Figoli, K. Friess, V. Hynek, New organophilic mixed matrix membranes derived from a polymer of intrinsic microporosity and silicalite-1, Polymer, 54 (2013) 2222–2230.
  22. M.M. Khan, V. Filiz, G. Bengtson, S. Shishatskiy, Md.M. Rahman, J. Lillepaerg, V. Abetz, Enhanced gas permeability by fabricating mixed matrix membranes of functionalized multiwalled carbon nanotubes and polymers of intrinsic microporosity (PIM), J. Membr. Sci., 436 (2013) 109–120.
  23. M. Alberto, J.M. Luque-Alled, L. Gao, M. Iliut, E. Prestat, L. Newman, S.J. Haigh, A. Vijayaraghavan, P.M. Budd, P. Gorgojo, Enhanced organophilic separations with mixed matrix membranes of polymers of intrinsic microporosity and graphene-like fillers, J. Membr. Sci., 526 (2017) 437–449.
  24. W.F. Yong, F.Y. Li, Y.C. Xiao, P. Li, K.P. Pramoda, Y.W. Tong, T.S. Chung, Molecular engineering of PIM-1/Matrimid blend membranes for gas separation, J. Membr. Sci., 407–408 (2012) 47–57.
  25. X.M. Wu, Q.G. Zhang, P.J. Lin, Y. Qu, A.M. Zhu, Q.L. Liu, Towards enhanced CO2 selectivity of the PIM-1 membrane by blending with polyethylene glycol, J. Membr. Sci., 493 (2015) 147–155.
  26. L. Hao, J. Zuo, T.-S. Chung, Formation of defect-free polyetherimide/PIM-1 hollow fiber membranes for gas separation, AIChE J., 60 (2014) 3848–3858.
  27. W. Kujawski, A. Warszawski, W. Ratajczak, T. Porbski, W. Capała, I. Ostrowska, Application of pervaporation and adsorption to the phenol removal from wastewater, Sep. Purif. Technol., 40 (2004) 123–132.
  28. P. Wu, R.W. Field, R. England, B.J. Brisdon, A fundamental study of organofunctionalised PDMS membranes for the pervaporative recovery of phenolic compounds from aqueous streams, J. Membr. Sci., 190 (2001) 147–157.
  29. T. Gupta, N.C. Pradhan, B. Adhikari, Synthesis and performance of a novel polyurethaneurea as pervaporation membrane for the selective removal of phenol from industrial waste water, Bull. Mater. Sci., 25 (2002) 533–536.
  30. S. Das, A.K. Banthia, B. Adhikari, Porous polyurethane urea membranes for pervaporation separation of phenol and chlorophenols from water, Chem. Eng. J., 138 (2008) 215–223.
  31. U. Ghosh, N.C. Pradhan, B. Adhikari, Separation of water and o-chlorophenol by pervaporation using HTPB-based polyurethaneurea membranes and application of modified Maxwell-Stefan equation, J. Membr. Sci., 272 (2006) 93–102.
  32. B. Satilmis, P.M. Budd, Base-catalysed hydrolysis of PIM- 1: amide versus carboxylate formation, RSC Adv., 4 (2014) 52189–52198.
  33. Y. Wang, T.S. Chung, B.W. Neo, M. Gruender, Processing and engineering of pervaporation dehydration of ethylene glycol via dual-layer polybenzimidazole (PBI)/polyetherimide (PEI) membranes, J. Membr. Sci., 378 (2011) 339–350.
  34. T. Atoguchi, T. Kanougi, T. Yamamoto, S. Yao, Phenol oxidation into catechol and hydroquinone over H-MFI, H-MOR, H-USY and H-BEA in the presence of ketone, Mol. Catal. A: Chem., 220 (2004) 183–187.
  35. G. Zhang, W. Gu, S. Ji, Z. Liu, Y. Peng, Z. Wang, Preparation of polyelectrolyte multilayer membranes by dynamic layerby- layer process for pervaporation separation of alcohol/water mixtures, J. Membr. Sci., 280 (2006) 727–733.
  36. C. Ding, X. Zhang, C. Li, X. Hao, Y. Wang, G. Guan, ZIF-8 incorporated polyether block amide membrane for phenol permselective pervaporation with high efficiency, Sep. Purif. Technol., 166 (2016) 252–261.
  37. N.L. Le, Y. Wang, T.-S. Chung, Pebax/POSS mixed matrix membranes for ethanol recovery from aqueous solutions via pervaporation, J. Membr. Sci., 379 (2011) 174–183.
  38. X. Feng, R.Y.M. Huang, Estimation of activation energy for permeation in pervaporation processes, J. Membr. Sci., 118 (1996) 127–131.
  39. M.I. Yagofarov, R.N. Nagrimanov, B.N. Solomonov, Relationships between fusion, solution, vaporization and sublimation enthalpies of substituted phenols, J. Chem. Thermodyn., 105 (2017) 50–57.
  40. X. Wang, J. Chen, M. Fang, T. Wang, L. Yu, J. Li, ZIF-7/PDMS mixed matrix membranes for pervaporation recovery of butanol from aqueous solution, Sep. Purif. Technol., 163 (2016) 39–47.
  41. B. Sinha, U.K. Ghosh, N.C. Pradhan, B. Adhikari, Separation of phenol from aqueous solution by membrane pervaporation using modified polyurethaneurea membranes, J. Appl. Polym. Sci., 101 (2006) 1857–1865.
  42. F. Pithan, C. Staudt-Bickel, Crosslinked copolyimide membranes for phenol recovery from process water by pervaporation, Chem. Phys. Chem., 4 (2003) 967–973.