References

  1. N.M. Shaalan, M. Rashad, A.H. Moharram, M.A. Abdel-Rahim, Promising methane gas sensor synthesized by microwave-assisted Co3O4 nanoparticles, Mater. Sci. Semicond. Process., 46 (2016) 1–5.
  2. N.M. Shaalan, M. Rashad, M.A. Abdel-Rahim, Repeatability of indium oxide gas sensors for detecting methane at low temperature, Mater. Sci. Semicond. Process., 56 (2016) 260–264.
  3. M. Rashad, Taymour A. Hamdalla, S.E. Al Garni, A.A.A. Darwish, S.M. Seleim, Optical and electrical behaviors in NiO/xFe2O3 nanoparticles synthesized by microwave irradiation method, Optic. Mater., 75 (2018) 869–874.
  4. N.M. Shaalan, M. Rashad, M.A. Abdel-Rahim, CuO nanoparticles synthesized by microwave-assisted method for methane sensing, Opt. Quant. Electron., 48 (2016) 531.
  5. H. Wang, J.-Z. Xu, J.-J. Zhu, H.-Y. Chen, Preparation of CuO nanoparticles by microwave irradiation, J. Crystal Growth, 244 (2002) 88–94.
  6. A.A. Hendi, M. Rashad, Photo-induced changes in nano-copper oxide for optoelectronic applications, Physica B, 538 (2018) 185–190.
  7. Y. Aparna, K.V. Enkateswara Rao, P. Srinivasa Subbarao, Synthesis and characterization of CuO nano particles by novel sol-gel method, 2nd International Conference on Environment Science and Biotechnology, 48 (2012) 156–160.
  8. S. Srivastava, M. Kumar, A. Agrawal, S.K. Dwivedi, Synthesis and characterisation of copper oxide nanoparticles, J. Appl. Phys., 5 (2013) 61–65.
  9. A. Asha Radhakrishnan, B. Baskaran Beena, Structural and optical absorption analysis of CuO nanoparticles, Indian J. Adv. Chem. Sci., 2 (2014) 158–161.
  10. P. Mallick, S. Sahu, Structure, microstructure and optical absorption analysis of CuO nanoparticles synthesized by solgel route, Nanosci. Nanotechnol., 2 (2012) 71–74.
  11. A. Fakhri, Adsorption characteristics of graphene oxide as a solid adsorbent for aniline removal from aqueous solutions: Kinetics, thermodynamics and mechanism studies, J. Saudi Chem. Soc., 21 (2017) S52–S57.
  12. S. Reddy, B.E. Kumara Swamy, H. Jayadevappa, CuO nanoparticle sensor for the electrochemical determination of dopamine, Electrochim. Acta., 61 (2012) 78–86.
  13. N. Bouazizi, R. Bargougui, A. Oueslati, R. Benslama, Effect of synthesis time on structural, optical and electrical properties of CuO nanoparticles synthesized by reflux condensation method, Adv. Mater. Lett., 6 (2015) 158–164.
  14. A. Eslami, N.M. Juibari, S.G. Hosseini, M. Abbasi, Synthesis and characterization of CuO nanoparticles by the chemical liquid deposition method and investigation of its catalytic effect on the thermal decomposition of ammonium perchlorate, Centr. Europ. J. Energ. Mater., 14 (2017) 152–168.
  15. M. Rashad, N.M. Shaalan, A.M. Abd-Elnaiem, Degradation enhancement of methylene blue on ZnO nanocombs synthesized by thermal evaporation technique, Desal. Water Treat., 57(54) (2016) 26267–26273.
  16. X. Liu, Z. Li, Q. Zhang, F. Li, T. Kong, CuO nanowires prepared via a facile solution route and their photocatalytic property, Mater. Lett., 72 (2012) 49–52.
  17. H.S. Devi, T.D. Singh, Synthesis of copper oxide nanoparticles by a novel method and its application in the degradation of methyl orange, Adv. Electron. Elect. Eng., 4 (2014) 83–88.
  18. M.A. Bhosale, S.C. Karekar, B.M. Bhanage, Room temperature synthesis of copper oxide nanoparticles: morphological evaluation and their catalytic applications for degradation of dyes and C–N bond formation reaction, Chemistry Select, 1 (2016) 6297–6307.
  19. A. Nezamzadeh-Ejhieh, H. Zabihi-Mobarakeh, Heterogeneous photodecolorization of mixture of methylene blue and Bromophenol blue using CuO-nano-clinoptilolite, J. Ind. Eng. Chem., 20 (2014) 1421–1431.
  20. G. Mustafa, H. Tahir, M. Sultan, N. Akhtar, Synthesis and characterization of cupric oxide (CuO) nanoparticles and their application for the removal of dyes, Afric. J. Biotechnol., 12 (2013) 6650–6660.
  21. A. Shiue, C.-M. Ma, R.-T. Ruan, C.-T. Chang, Adsorption kinetics and isotherms for the removal methyl orange from wastewaters using copper oxide catalyst prepared by the waste printed circuit boards, Environ. Res., 22 (2012) 209–215.
  22. J. Yang, S. Cui, J.-q. Qiao, H.-z. Lian, The photocatalytic dehalogenation of chlorhenols and bromophenols by cobalt doped nano TiO2, J. Molec. Catal. A: Chemical, 395 (2014) 42–51.
  23. Y. Lu, Y. Wang, X. Zhu. The removal of bromophenol blue from water by solvent solution, Separ. Sci. Technol., 36 (2001) 3763–3776.
  24. R. Azmat, Z. Khalid, M. Haroon, K. B. Mehar. Spectral analysis of catalytic oxidation and degradation of bromophenol blue at low pH with potassium dichromate, Adv. Nat. Sci., 6 (2013) 38–43.
  25. N.K. Temel, R. Gürkan, F. Ayan, Photocatalytic TiO2-catalyzed degradation of bromophenol blue-mediated Mo(VI)-peroxo complexes in the presence of SDS, Desal. Water Treat., 57 (2016) 21083–21090.
  26. S. Dhananasekaran, R. Palanivel, S. Pappu, Adsorption of methylene blue, bromophenol blue, and coomassie brilliant blue by a-chitin nanoparticles, J. Adv. Res., 7 (2016) 113–124.
  27. M.A. Malana, S. Ijaz, M.N. Ashiq, Removal of various dyes from aqueous media onto polymeric gels by adsorption process: Their kinetics and thermodynamics, Desalination, 263 (2010) 249–257.
  28. L. You, Z. Wu, T. Kim, K. Lee, Kinetics and thermodynamics of bromophenol blue adsorption by a mesoporous hybrid gel derived from tetraethoxysilane and bis (trimethoxysilyl) hexane, J. Colloid Interf. Sci., 300 (2006) 526–535.
  29. J. Liu, S. Yao, L. Wang, W. Zhu, J. Xu, H. Song, Adsorption of bromophenol blue from aqueous samples by novel supported ionic liquids, J. Chem. Technol. Biotechnol., 89 (2014) 230–238.
  30. M. Rashad, A.M. Ali, M.I. Sayyed, I.V. Kityk, Photoluminescence features of magnetic nano-metric metal oxides, J. Mater. Sci. Mater. Electron. (2018).
  31. M. Rashad, M. Rüsing, G. Berth, K. Lischka, A. Pawlis, CuO and Co3O4 nanoparticles: synthesis, characterizations, and Raman spectroscopy, J. Nanomater., Vol. 2013, 1–6 Article ID 714853, 6 pages.
  32. S.K. Theydan, M.J. Ahmed, Adsorption of methylene blue onto biomass-based activated carbon by FeCl3 activation: Equilibrium, kinetics, and thermodynamic studies, J. Anal. Appl. Pyrol., 97 (2012) 116–122.
  33. H.A. Al-Aoh, adsorption performance of nickel oxide nanoparticles (NiO NPs) towards bromophenol blue due (BB), Desal. Water Treat., 110 (2018) 229–238.
  34. F. Ahmad, W.M.A.W. Daud, M.A. Ahmad, R. Radzi, Using cocoa (The obroma cacao) shell-based activated carbon to remove 4-nitrophenol from aqueous solution: Kinetics and equilibrium studies, Chem. Eng. J., 178 (2011) 461–467.
  35. G. Atun, G. Hisarli, W.S. Sheldrick, M. Muhlerler, Adsorptive removal of methylene blue from colored effluents on fuller,s earth, J. Colloid Interf. Sci., 261 (2003) 32–39.
  36. A.H. Moharram, S.A. Mansour, M.A. Hussein, M. Rashad, Direct precipitation and characterization of ZnO nanoparticles, J. Nanomater., vol. 2014, Article ID 716210.
  37. Hatem. A. Al-Aoh, M.J. Maah, Rosiyah. Yahya, M.R. Bin Abas, Isotherms, kinetics and thermodynamics of 4-nitrophenol adsorption on fiber-based activated carbon from coconut husks prepared under optimized conditions, Asian J. Chem., 25 (2013) 9573–9581.
  38. S.F. Soares, T.R. Simões, T. Trindade, A.L. Daniel-da-Silva, Highly efficient removal of dye from water using magnetic carrageenan/silica hybrid nano-adsorbents, Water Air Soil Pollut., 228 (2017) 87.
  39. H.A. Al-Aoh, M.J. Maah, R. Yahya, M.R. Bin Abas, A comparative investigation on adsorption performances of activated carbon prepared from coconut husk fiber and commercial activated carbon for acid red 27 dye, Asian J. Chem., 25 (2013) 9582–9590.
  40. R. Lafi, A. Hafiane, Removal of methyl orange (MO) from aqueous solution using cationic surfactants modified coffee waste (MCWs), J. Taiwan Inst. Chem. Eng., 58 (2016) 424– 433.
  41. Q. Baocheng, Z. Jiti, X. Xuemin, Z. Chunli, Z. Hongxia, Z. Xiaobai, Adsorption behavior of Azo Dye C. I. Acid Red 14 in aqueous solution on surface soils, J. Environ Sci., 20 (2008) 704–709.
  42. V.K. Gupta, B. Guptaa, A. Rastogi, S. Agarwal, A. Nayak, A comparative investigation on adsorption performances of mesoporous activated carbon prepared from waste rubber tire and activated carbon for a hazardous azo dye Acid Blue 113, J. Hazard. Mater., 186 (2011) 891–901.
  43. B.H. Hameed, A.A. Ahmad, Batch adsorption of methylene blue from aqueous solution by garlic peel, an agricultural waste biomass, J. Hazard. Mater., 164 (2009) 870–875.
  44. H.A. Al-Aoh, R. Yahya, M.J. Maah, M.R. Bin Abas, Adsorption of methylene blue on activated carbon fiber prepared from coconut husk: isotherm, kinetics and thermodynamics studies, Desal. Water Treat., 52 (2014) 6720–6732.
  45. A. Kurniawan, S. Ismadji, Potential utilization of Jatropha curcas L. Press-cake residue as new precursor for activated carbon preparation: Application in methylene blue removal from aqueous solution, J. Taiwan Inst. Chem. Eng., 42 (2011) 826–836.
  46. M.J. Iqbal, M.N. Ashiq, Thermodynamics and kinetics of adsorption of dyes from aqueous media onto alumina, J. Chem. Soc. Pak., 32 (2010) 419–428.
  47. S.M.A. El-Gamal, M.S. Amin, M.A. Ahmed, Removal of methyl orange and bromophenol blue dyes from aqueous solution using Sorel’s cement nanoparticles, JECE., 3 (2015) 1702–1712.
  48. A.O. Dada, A.A. Inyinbor, A.P. Oluyori, Comparative adsorption of dyes unto activated carbon prepared from maize stems and sugar cane stems, IOSR-JAC., 2 (2012) 38–43.
  49. S. Sohni, K. Gul, F. Ahmad, I. Ahmad, A. Khan, N. Khan, S.B. Khan, Highly efficient removal of acid red-17 and bromophenol blue dyes from industrial wastewater using graphene oxide functionalized magnetic chitosan composite, Polym. Comp., (2017) DOI 10.1002/pc.24349.