**References**

- H.X. Du, F.S. Li, Z.J. Yu, C.H. Feng, W.H. Li, Nitrification and denitrification in two-chamber microbial fuel cells for treatment of wastewater containing high concentrations of ammonia nitrogen, Environ. Technol., 37 (2016) 1232–1239.
- S.F. Kosari, B. Rezania, K.V. Lo, D.S. Mavinic, Operational strategy for nitrogen removal from centrate in a two-stage partial nitrification – anammox process, Environ. Technol., 35 (2014) 1110–1120.
- Y.Q. Yao, D.F. Lu, Z.M. Qi, S.H. Xia, Miniaturized optical system for detection of ammonia nitrogen in water based on gas-phase colorimetry, Anal. Lett., 45 (2012) 2176–2184.
- I.M. Valente, H.M. Oliveira, C.D. Vaz, R.M. Ramos, Determination of ammonia nitrogen in solid and liquid highcomplex matrices using one-step gas-diffusion microextraction and fluorimetric detection, Talanta, 167 (2017) 747–753.
- H. Haimi, M. Mulas, F. Corona, R. Vahala, Data-derived softsensors for biological wastewater treatment plants: an overview, Environ. Modell. Software, 47 (2013) 88–107.
- H.G. Han, Y. Li, Y.N. Guo, J.F. Qiao, A soft computing method to predict sludge volume index based on a recurrent selforganizing neural network, Appl. Soft Comput., 38 (2016) 477–486.
- X.F. Yuan, Z.Q. Ge, Z.H. Song, Y.L. Wang, C.H. Yang, H.W. Zhang, Soft sensor modeling of nonlinear industrial processes based on weighted probabilistic projection regression, IEEE Trans. Instrum. Meas., 66 (2017) 837–845.
- S. Yin, X.W. Li, H.J. Gao, O. Kaynak, Data-based techniques focused on modern industry: an overview, IEEE Trans. Ind. Electron., 62 (2015) 657–667.
- J.B. Zhang, Z.H. Deng, K.S. Choi, S.T. Wang, Data-driven elastic fuzzy logic system modeling: constructing a concise system with human-like inference mechanism, IEEE Trans. Fuzzy Syst., 26 (2018) 2160–2173.
- J.F. Canete, R. Baratti, M. Mulas, A. Ruano, Soft-sensing estimation of plant effluent concentrations in a biological wastewater treatment plant using an optimal neural network, Expert Syst. Appl., 63 (2016) 8–19.
- M.F. Nezhad, N. Mehrdadi, A. Torabian, S. Behboudian, Artificial neural network modeling of the effluent quality index for municipal wastewater treatment plants using quality variables: south of Tehran wastewater treatment plant, J. Water Supply Res. Technol. AQUA, 65 (2016) 18–27.
- M. Bagheri, S.A. Mirbagheri, Z. Bagheri, A.M. Kamarkhanie, Modeling and optimization of activated sludge bulking for a real wastewater treatment plant using hybrid artificial neural networks-genetic algorithm approach, Process Saf. Environ. Prot., 95 (2015) 12–25.
- D. Dovžan, V. Logar, I. Škrjanc, Implementation of an evolving fuzzy model (eFuMo) in a monitoring system for a waste-water treatment process, IEEE Trans. Fuzzy Syst., 23 (2015) 1761–1776.
- M.M. Ebadzadeh, A.S. Badr, IC-FNN: a novel fuzzy neural network with interpretable intuitive and correlated-contours fuzzy rules for function approximation, IEEE Trans. Fuzzy Syst., 26 (2018) 1288–1302.
- J.J. Rubio, SOFMLS: online self-organizing fuzzy modified leastsquares network, IEEE Trans. Fuzzy Syst., 17 (2009) 1296–1309.
- N. Wang, M.J. Er, X.Y. Meng, A fast and accurate online selforganizing scheme for parsimonious fuzzy neural networks, Neurocomputing, 72 (2009) 3818–3829.
- J.F. Qiao, W. Li, H.G. Han, Soft computing of biochemical oxygen demand using an improved T–S fuzzy neural network, Chin. J. Chem. Eng., 22 (2014) 1254–1259.
- C.F. Juang, C.D. Hsieh, A fuzzy system constructed by rule generation and iterative linear SVR for antecedent and consequent parameter optimization, IEEE Trans. Fuzzy Syst., 20 (2012) 372–384.
- M.M. Ebadzadeh, A.S. Badr, CFNN: correlated fuzzy neural network, Neurocomputing, 148 (2015) 430–444.
- M.Z. Huang, Y.W. Ma, J.Q. Wan, X.H. Chen, A sensor-software based on a genetic algorithm-based neural fuzzy system for modeling and simulating a wastewater treatment process, Appl. Soft Comput., 27 (2015) 1–10.
- L. Teslic, B. Hartmann, O. Nelles, I. Škrjanc, Nonlinear system identification by Gustafson–Kessel fuzzy clustering and supervised local model network learning for the drug absorption spectra process, IEEE Trans. Neural Networks Learn. Syst., 22 (2011) 1941–1951.
- H. Malek, M.M. Ebadzadeh, M. Rahmati, Three new fuzzy neural networks learning algorithms based on clustering, training error and genetic algorithm, Appl. Intell., 37 (2012) 280–289.
- M. Seera, C.P. Lim, C.K. Loo, H. Singh, A modified fuzzy min–max neural network for data clustering and its application to power quality monitoring, Appl. Soft Comput., 28 (2015) 19–29.
- J.J. Tang, F. Liu, W.H. Zhang, R.M. Ke, Y.J. Zou, Lane-changes prediction based on adaptive fuzzy neural network, Expert Syst. Appl., 91 (2018) 452–463.
- J.J. Tang, F. Liu, Y.J. Zou, W.B. Zhang, Y.H. Wang, An improved fuzzy neural network for traffic speed prediction considering periodic characteristic, IEEE Trans. Intell. Transp. Syst., 18 (2017) 2340–2350.
- J.J. Tang, Y.J. Zou, J. Ash, S. Zhang, F. Liu, Y.H. Wang, Travel time estimation using freeway point detector data based on evolving fuzzy neural inference system, PLoS One, 11 (2016) e0147263.
- R.D. Zhang, J.L. Tao, A nonlinear fuzzy neural network modeling approach using an improved genetic algorithm, IEEE Trans. Ind. Electron., 65 (2018) 5882–5892.
- Y.Y. Lin, J.Y. Chang, C.T. Lin, Identification and prediction of dynamic systems using an interactively recurrent self-evolving fuzzy neural network, IEEE Trans. Neural Networks Learn Syst., 24 (2013) 310–321.
- M. Prasad, C.T. Lin, D.L. Li, C.T. Hong, W.P. Ding, J.Y. Chang, Soft-boosted self-constructing neural fuzzy inference network, IEEE Trans. Syst. Man Cybern. Syst., 47 (2017) 584–588.
- S.Q. Wu, M.J. Er, Dynamic fuzzy neural networks-a novel approach to function approximation, IEEE Trans. Syst. Man Cybern. Part B Cybern., 30 (2000) 358–364.
- S.Q. Wu, M.J. Er, Y. Gao, A fast approach for automatic generation of fuzzy rules by generalized dynamic fuzzy neural networks, IEEE Trans. Fuzzy Syst., 9 (2001) 578–594.
- X.J. Ma, J. Yu, Q.L. Dong, A generalized dynamic fuzzy neural network based on singular spectrum analysis optimized by brain storm optimization for short-term wind speed forecasting, Appl. Soft Comput., 54 (2017) 296–312.
- J.C. Bezdek, R. Ehrlich, W. Full, FCM: the fuzzy c-means clustering algorithm, Comput. Geosci., 10 (1984) 191–203.
- D. Graves, W. Pedrycz, Kernel-based fuzzy clustering and fuzzy clustering: a comparative experimental study, Fuzzy Sets Syst., 161 (2010) 522–543.
- M.G. Gong, Y. Liang, J. Shi, W.P. Ma, J.J. Ma, Fuzzy c-means clustering with local information and kernel metric for image segmentation, IEEE Trans. Image Process., 22 (2013) 573–584.
- K.P. Lin, A novel evolutionary kernel intuitionistic fuzzy c-means clustering algorithm, IEEE Trans. Fuzzy Syst., 22 (2014) 1074–1087.
- B.M. Wilamowski, H. Yu, Improved computation for Levenberg–Marquardt training, IEEE Trans. Neural Networks Learn Syst., 21 (2010) 930–937.
- H.G. Han, L.M. Ge, J.F. Qiao, An adaptive second order fuzzy neural network for nonlinear system modeling, Neurocomputing, 214 (2016) 837–847.
- Z. Wang, J.S. Chu, Y Song. Y.J. Cui, H. Zhang, X.Q. Zhao, Z.H. Li, J.M. Yao, Influence of operating conditions on the efficiency of domestic wastewater treatment in membrane bioreactors, Desalination, 245 (2009) 73–81.
- F.J. Chang, Y.H. Tsai, P.A. Chen, A. Coynel, G. Vachaud, Modeling water quality in an urban river using hydrological factors–data driven approaches, J. Environ. Manage., 151 (2015) 87–96.
- E. Lee, S. Han, H. Kim, Development of software sensors for determining total phosphorus and total nitrogen in waters, Int. J. Environ. Res. Public Health, 10 (2013) 219–236.