1. R.L. Hao, Y. Zhao, B. Yuan, S.H. Zhou, S. Yang, Establishment of a novel advanced oxidation process for economical and effective removal of SO2 and NO, J. Hazard. Mater., 318 (2016) 224–232.
  2. B. Shen, Y. Han, L. Price, H. Lu, M. Liu, Techno-economic evaluation of strategies for addressing energy and environmental challenges of industrial boilers in China, Energy, 118 (2017) 526–533.
  3. G. Cheng, C.X. Zhang, Desulfurization and Denitrification technologies of coal-fired flue gas, Pol. J. Environ. Stud., 27 (2018) 481–489.
  4. R.L. Hao, S. Yang, B. Yuan, Y. Zhao, Simultaneous desulfurization and denitrification through an integrative process utilizing NaClO2/Na2S2O8, Fuel Process. Technol., 159 (2017) 145–152.
  5. J. Wang, W.Q. Zhong, Simultaneous desulfurization and denitrification of sintering flue gas via composite absorbent, Chin. J. Chem. Eng., 24 (2016) 1104–1111.
  6. R. Del Valle-Zermeño, M. Niubó, J. Formosa, M. Guembe, J.A. Aparicio, J.M. Chimenos, Synergistic effect of the parameters affecting wet flue gas desulfurization using magnesium oxides by-products, Chem. Eng. J., 262 (2015) 268–277.
  7. L.Y. Yan, X.F. Lu, Q. Guo, Q.H. Wang, X.Y. Ji, Research on the thermal decomposition and kinetics of byproducts from MgO wet flue gas desulfurization, Adv. Powder Technol., 25 (2014) 1709–1714.
  8. Z. Shen, X. Chen, M. Tong, S. Guo, M. Ni, J. Lu, Studies on magnesium-based wet flue gas desulfurization process with oxidation inhibition of the byproduct, Fuel, 105 (2013) 578–584.
  9. B.H. Song, Wet magnesium oxide flue gas desulfurization process: a review, China Environ. Prot. Ind., 8 (2009) 28–30.
  10. Q. Guo, A study on magnesia FGD regeneration technology, Nonferrous Metals Eng. Res., 32 (2011) 37–39.
  11. L. Yan, X. Lu, Q. Wang, Y. Kang, J. Xu, Y. Chen, Research on sulfur recovery from the byproducts of magnesia wet flue gas desulfurization, Appl. Therm. Eng., 65 (2014) 487–494.
  12. L. Yan, Research on regenerative cycle and utilization of MgO wet flue gas desulfurization byproducts, Chongqing University, 2014.
  13. T. Zhu, Y. Ma, H. Zhang, D. Li, L. Li, X. Zhou, B. Song, J. Hao, Experimental investigation of MgSO3 oxidation process by catalysis in the magnesium desulfurization, Catal. Today, 258 (2015) 70–74.
  14. T. Qi, L. Wang, S. Wu, Q. Li, J. Liu, L. Meng, H. Xiao, Insight into structural role of 2D/3D mesoporous silicon in catalysis of magnesium sulfite oxidation, Appl. Catal. A, 566 (2018) 33–43.
  15. Q. Li, Y. Yang, L. Wang, P. Xu, Y. Han, Mechanism and kinetics of magnesium sulfite oxidation catalyzed by multiwalled carbon nanotube, Appl. Catal. B, 203 (2017) 851–858.
  16. L. Wang, T. Qi, J. Wang, S. Zhang, H. Xiao, Y. Ma, Uniform dispersion of cobalt nanoparticles over nonporous TiO2 with low activation energy for magnesium sulfate recovery in a novel magnesia-based desulfurization process, J. Hazard. Mater., 342 (2018) 579–588.
  17. R. Del Valle-Zermeño, J. Formosa, J.A. Aparicio, J.M. Chimenos, Reutilization of low-grade magnesium oxides for flue gas desulfurization during calcination of natural magnesite: a closed-loop process, Chem. Eng. J., 254 (2014) 63–72.
  18. L. Wang, H. Feng, Y. Dong, J. Peng, W. Li, Solubility and metastable zone width of aqueous sodium dichromate dihydrate solutions in the presence of sodium chromate additive, J. Cryst. Growth, 454 (2016) 105–110.
  19. H. Lu, J. Wang, T. Wang, N. Wang, Y. Bao, H. Hao, Crystallization techniques in wastewater treatment: an overview of applications, Chemosphere, 173 (2017) 474–484.
  20. T. Wang, H. Lu, J. Wang, Y. Xiao, Y. Zhou, Y. Bao, H. Hao, Recent progress of continuous crystallization, J. Ind. Eng. Chem., 54 (2017) 14–29.
  21. C. Himawan, H.J.M. Kramer, G.J. Witkamp, Study on the recovery of purified MgSO4·7H2O crystals from industrial solution by eutectic freezing, Sep. Purif. Technol., 50 (2006) 240–248.
  22. Q. Hu, Y. Li, The process technology application of magnesium hydrate recovery from magnesium oxide flue gas desulfurization, Chem. Enterprise Manage., (2013) 241.
  23. Y.B. Zhang, Y.M. Chen, Y.L. Ma, Effects of several crystallization conditions on the recovery of desulfurization by-products, Ind. Saf. Environ. Protect., 37 (2011) 32–34.
  24. X.J. Ren, X.L. Huang, Phase equilibria in the quaternary system of Li+, Mg2+∥Cl, SO42–-H2O at 273.15 K, Inorg. Chem. Ind., 48 (2016) 13–15, 28.
  25. L.-D. Shiau, Comparison of the interfacial energy and preexponential factor calculated from the induction time and metastable zone width data based on classical nucleation theory, J. Cryst. Growth, 450 (2016) 50–55.
  26. M. Jin, P. Frohberg, Y. Sun, P. Li, J. Yu, J. Ulrich, Study on metastable zone width and crystal growth of a ternary system: case study MgCl2·6H2O·1,4-dioxane, Chem. Eng. Sci., 133 (2015) 181–189.
  27. X.X. Sun, Y.Z. Sun, J.G. Yu, Cooling crystallization of aluminum sulfate in pure water, J. Cryst. Growth, 419 (2015) 94–101.
  28. H. Takiyama, Supersaturation operation for quality control of crystalline particles in solution crystallization, Adv. Powder Technol., 23 (2012) 273–278.
  29. N. Sanzida, Z.K. Nagy, Iterative learning control for the systematic design of supersaturation controlled batch cooling crystallisation processes, Comput. Chem. Eng., 59 (2013) 111–121.
  30. A. Borisenko, Nominal vs. actual supersaturation of solutions, J. Cryst. Growth, 486 (2018) 122–125.
  31. Z. Liang, M. Zhang, F. Wu, J.-F. Chen, C. Xue, H. Zhao, Supersaturation controlled morphology and aspect ratio changes of benzoic acid crystals, Comput. Chem. Eng., 99 (2017) 296–303.
  32. S.Y. Qin, Y.F. Zhang, Y. Zhang, Nucleation and morphology of sodium metaborate dihydrate from NaOH solution, J. Cryst. Growth, 433 (2016) 143–147.
  33. S. Li, J. Xu, G. Luo, Control of crystal morphology through supersaturation ratio and mixing conditions, J. Cryst. Growth, 304 (2007) 219–224.
  34. D. Aquilano, F. Otálora, L. Pastero, J.M. García-Ruiz, Three study cases of growth morphology in minerals: halite, calcite and gypsum, Prog. Cryst. Growth Charact. Mater., 62 (2016) 227–251.
  35. L. Peng, H. Dai, Y. Wu, Y. Peng, X. Lu, A comprehensive review of phosphorus recovery from wastewater by crystallization processes, Chemosphere, 197 (2018) 768–781.
  36. J.J. Jiang, Measurement of Crystallization Metastable Zone and Study on Particle Size Control of Ammonium Perchlorate, Nanjing University of Science and Technology, 2013.
  37. B. Tansel, G. Lunn, O. Monje, Struvite formation and decomposition characteristics for ammonia and phosphorus recovery: a review of magnesium-ammonia-phosphate interactions, Chemosphere, 194 (2018) 504–514.
  38. T.L. Ye, Principle and Application of Chemical Crystallization Process, Beijing University of Technology Press, 2006.