1. F.A. El-Gohary, F.A. Nasr, H.I. Aly, Cost effective pre-treatment of food processing industrial wastewater, Water Sci. Technol., 40 (1999) 17–24.
  2. İ. Öztürk, E.B. Gençsoy, A.F. Aydın, Y. Kırmızı, Z. Eker, Two-Stage Biological Treatment of Potato Processing Industry Wastewater, Istanbul Technical University SKKD, Vol. 13, 2003, pp. 1–9.
  3. J.M. Dalzell, Food Industry and the Environment: Practical Issues and Cost Implications, Blackie Academic and Professional, London, 1994.
  4. J. Vymazal, The use of sub-surface constructed wetlands for wastewater treatment in the Czech Republic: 10 years experience, Ecol. Eng., 18 (2002) 633–646.
  5. D.P.L. Rousseau, E. Lesage, A. Story, P.A. Vanrolleghem, N. De Pauw, Constructed wetlands for water reclamation, Desalination, 218 (2008) 181–189.
  6. R. Kadlec, Comparison of free water and horizontal subsurface treatment wetlands, Ecol. Eng., 35 (2009) 159–174.
  7. S.D. Wallace, R.L. Knight, Small-scale constructed wetland treatment systems: feasibility, design criteria, and O&M Requirements, Alexandria Virginia, 2006.
  8. C.S.C. Calheiros, A.O.S.S. Rangel, P.M.L. Castro, Constructed wetland systems vegetated with different plants applied to the treatment of tannery wastewater, Water Res., 41 (2007) 1790–1798.
  9. M.S. Khan, A. Zaidi, P.A. Wani, M. Oves, Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils, Environ. Chem. Lett., 7 (2009) 1–19.
  10. M. Braeckevelt, N. Reiche, S. Trapp, A. Wiessner, H. Paschke, Chlorobenzene removal efficiencies and removal processes in a pilot-scale constructed wetland treating contaminated groundwater, Ecol. Eng., 37 (2011) 903–913.
  11. R.H. Kadlec, Decomposition in Wastewater Wetlands, in D.A. Hammer, Ed., Constructed Wetlands for Wastewater Treatment: Municipal, Industrial and Agriculture, Lewis Publishers, Chelsea, Michigan, 1989, pp. 459–468.
  12. USEPA (U.S. Environmental Protection Agency), Development Document for Effluent Limitations Guidelines and New Source Performance Standards for the Offshore Subcategory of the Oil and Gas Extraction Point Source Category, Final Version EPA 821-R-93-003, 1993.
  13. S.K. Merz, Guidelines for Using Free Water Surface Constructed Wetlands to Treat Municipal Sewage, Queensland Department of Natural Resources, Brisbane, Australia DNQ00047, 2000.
  14. S.Ç. Ayaz, Ö. Aktaş, L. Akça, N. Fındık, Effluent quality and reuse potential of domestic wastewater treated in a pilot-scale hybrid constructed wetland system, J. Environ. Manage., 156 (2015) 115–120.
  15. C.L. Hua, L. Wen, Z. Xi-zhen, M.A. Mei, H. Xi-hua, X. Yanyang, Performance of hybrid constructed wetland systems for treating septic tank effluent, J. Environ. Sci., 18 (2006) 665–669.
  16. J.A.H. Melian, A.J. Martin-Rodriguez, J. Arana, O. Gonzãlez-Diaz, J.J. Gonzãlez-Henriquez, Hybrid constructed wetlands for wastewater treatment and reuse in the Canary Islands, Ecol. Eng., 36 (2010) 891–899.
  17. M.A. Belmont, E. Cantellano, S. Thompson, M. Williamson, A. Sánchez, C.D. Metcalfe, Treatment of domestic wastewater in a pilot-scale natural treatment system in central Mexico, Ecol. Eng., 23(2004) 299–311.
  18. H. Obarska-Pempkowiak, E. Haustein, E. Wojciechowska, Distribution of Heavy Metals in Vegetation of Constructed Wetlands in Agricultural Catchment, in Vymazal, Ed., Natural and Constructed Wetlands: Nutrients, Metals and Management, Backhuys Publishers, Leiden, The Netherlands, 2005, pp. 125–134.
  19. D.Q. Zhang, K.B.S.N. Jinadasa, R.M. Gersberg, Y. Liu, W.J. Ng, S.K. Tan, Application of constructed wetlands for wastewater treatment in developing countries-a review recent developments, J. Environ. Manage., 141 (2014) 116–131.
  20. A. Yalcuk, A. Ugurlu, Comparison of horizontal and vertical constructed wetland systems for landfill leachate treatment, Bioresour. Technol., 100 (2009) 2521–2526.
  21. S. Dağlı, Investigation of Phosphorus Removal by Artificial Wetland Systems from Domestic Wastewaters, Istanbul Technical University Institute of Science and Technology, Istanbul, 2006.
  22. S.Y. Chan, Y.F. Tsang, H. Chua, S.N. Sin, L.H. Cui, Performance study of vegetated sequencing batch coal slag bed treating domestic wastewater in suburban area, Bioresour. Technol., 99 (2008) 3774–3781.
  23. P.J. Hocking, Effects of sodium and potassium chlorides on the growth and accumulation of mineral ions by Cyperus involucratus, Rottb., Aquat. Bot., 21 (1985) 201–217.
  24. M. Bilgin, İ. Şimşek, Ş. Tulun, Treatment of domestic wastewater using a lab-scale activated sludge/vertical flow subsurface constructed wetland by using Cyperus alternifolius, Ecol. Eng., 70 (2014) 362–365.
  25. J. Huang, The Application of Remote Sensing and GIS for Improving Modeling the Response of Wetland Vegetation Communities to Water Level Fluctuations at Long Point, Ontario, 2016. UWSpace. Available at:
  26. J. Vymazal, The hybrid constructed wetland for wastewater treatment with special attention to nitrogen removal: a review of a recent development, Water Res., 47 (2013) 4795–4811.
  27. M. Borin, M. Politeo, G.D. Stefani, Performance of a hybrid constructed wetland treating piggery wastewater, Ecol. Eng., 51 (2013) 229–236.
  28. T. Tuttolomando, C. Letto, S. LaBella, R. Leona, G. Virga, M. Licata, Water Balance and pollutant removal efficiency when considering evapotranspiration in a pilot scale horizontal subsurface flown constructed wetland in Western Sicily (Italy), Ecol. Eng., 87 (2016) 295–304.
  29. A. Korkusuz, M. Beklioğlu, G. Demirer, Treatment efficiencies of the vertical flow pilot scale constructed wetlands for domestic wastewater treatment, Turkish J. Eng. Environ. Sci., 28 (2004) 333–344.
  30. G. Sharma, Priya, U. Brighu, Performance analysis of vertical up-flow constructed wetland for secondary treatment effluent, APCBEE Procedia, 10 (2014) 110–114.
  31. E. Larsen, M. Greenway, Quantification of biofilms in a subsurface flow wetland and there role in nutrient removal, Water Sci. Technol., 49 (2004) 115–122.
  32. A.K. Yadav, R. Abbasi, N. Kumar, S. Satya, T.R. Sreekrishnan, B.K. Mishra, The removal of heavy metals in wetland microcosms: effects of bed depth, plant species and metal mobility, Chem. Eng., 211–212 (2012) 501–507.
  33. A.P. Sarmento, A.C.J. Borges, A.T. de Matos, Effect of cultivated species and retention time on the performance of constructed wetland, Environ. Technol., 34 (2013) 961–965.
  34. C. Rampsarad, L. Philip, Surfactants and personal care products removal in pilot scale horizontal and vertical flow constructed wetlands while treating greywater, Chem. Eng. J., 284 (2016) 458–468.
  35. S. Sehar, Sumera, S. Naeem, I. Perveen, N. Ali, S. Ahmed, A comparative study of macrophytes influence on wastewater treatment through subsurface flow hybrid constructed wetland, Ecol. Eng., 81 (2015) 62–69.
  36. P.S. Burgoon, R.H. Kadlec, M. Henderson, Treatment of potato processing wastewater with engineered natural systems, Water Sci. Technol., 40 (1999) 211–215.
  37. J. Vymazal, Removal of nutrients in various types of constructed wetlands, Sci. Total Environ., 380 (2007) 48–65.
  38. K.R. Reddy, W.H. Patrick, F.E. Broadbent, Nitrogen transformations and loss in flooded soils and sediments, Crit. Rev. Environ. Control, 13 (1984) 273–309.
  39. M.A. Rasheed, S.A. Mckenna, A.B. Carter, R.G. Coles, Contrasting recovery of shallow and deep water seagrass communities following climate associated losses in tropical North Queensland Australia, Mar. Pollut. Bull., 83 (2014) 491–499.
  40. K. Sakadevan, H.J. Bavor, Phosphate adsorption characteristics of soils, slags and zeolite to be used as substrates in constructed wetland system, Water Res., 32 (1998) 393.
  41. W. Tao, J. Han, H. Li, Investigation into ammonia stress on Cyperus alternifolius and its impact on nutrient removal in microcosm experiments, J. Environ. Manage., 163 (2015) 254–261.
  42. G.B. Reddy, D.A. Forbes, R. Phillips, J.S. Cyrus, J. Porter, Demonstration of technology to treat swine waste using geotextile bag, zeolite bed and constructed wetland, Ecol. Eng., 57 (2013) 353–360.
  43. A. Yalcuk, N.B. Pakdil, S.Y. Turan, Performance evaluation on the treatment of olive mill wastewater in vertical subsurface flow constructed wetlands, Desalination, 262 (2010) 209–214.
  44. A. Yıldızbakan, Growing Mathematical Models in Trees and Comparative Analysis of These Models, Çukurova Üniversitesi Fen Bilimleri Enstitüsü, Adana, 2005.
  45. E. Yılmaz, C. Akgün, A. Yıldızbakan, (Eucalyptus grandis W. Hill ex Maiden) have examined the growth pattern of tree species and found that they fit the Von Bertalanffy model of the most suitable breeder, J. DOA, 11 (2005) 35–52.