References

  1. Z. Aksu, Application of biosorption for the removal of organic pollutants: a review, Process. Biochem., 40 (2005) 997–1026.
  2. W. Zhang, F. Tan, W. Wang, X. Qiu, X. Qiao, J. Chen, Facile, template-free synthesis of silver nanodendrites with high catalytic activity for the reduction of p-nitrophenol, J. Hazard. Mater., 217–218 (2012) 36–42.
  3. K.C. Jones, V.P. De, Persistent organic pollutants (POPs): state of the science, Environ. Pollut., 100 (1999) 209–221.
  4. X. Wang, F. Tan, W. Wang, X. Qiao, X. Qiu, J. Chen, Anchoring of silver nanoparticles on graphitic carbon nitride sheets for the synergistic catalytic reduction of 4-nitrophenol, Chemosphere, 172 (2017) 147–154.
  5. G. Mele, R.D. Sole, G. Vasapollo, E. GarcıÁ -López, L. Palmisano, M. Schiavello, Photocatalytic degradation of 4-nitrophenol in aqueous suspension by using polycrystalline TiO2 impregnated with functionalized Cu(II)–porphyrin or Cu(II)–phthalocyanine, J. Catal., 217 (2003) 334–342.
  6. S. Haydar, M.A. Ferro-GarcıÁ , J. Rivera-Utrilla, J.P. Joly, Adsorption of p-nitrophenol on an activated carbon with different oxidations, Carbon, 41 (2003) 387–395.
  7. L. Ge, W. Wang, Z. Peng, F. Tan, X. Wang, J. Chen, X. Qiao, Facile fabrication of Fe@MgO magnetic nanocomposites for efficient removal of heavy metal ion and dye from water, Powder Technol., 326 (2018) 393–401.
  8. L. Ge, Z. Peng, W. Wang, F. Tan, X. Wang, B. Su, X. Qiao, P.K. Wong, g-C3N4/MgO nanosheets: light-independent, metal- poisoning-free catalysts for the activation of hydrogen peroxide to degrade organics, J. Mater. Chem. A, 6 (2018) 16421–16429.
  9. D. Wu, W. Wang, F. Tan, F. Sun, H. Lu, X. Qiao, Fabrication of pit-structured ZnO nanorods and their enhanced photocatalytic performance, RSC Adv., 3 (2013) 20054.
  10. X. Song, W. Li, D. He, H. Wu, Z. Ke, C. Jiang, G. Wang, X. Xiao, The “midas touch” transformation of TiO2 nanowire arrays during visible light photoelectrochemical performance by carbon/nitrogen coimplantation, Adv. Energy Mater., 8 (2018) 1800165.
  11. Z.G. Dai, X.H. Xiao, Y.P. Zhang, F. Ren, W. Wu, S.F. Zhang, J. Zhou, F. Mei, C.Z. Jiang, In situ Raman scattering study on a controllable plasmon-driven surface catalysis reaction on Ag nanoparticle arrays, Nanotechnology, 23 (2012) 335701.
  12. H. Park, D.A. Reddy, Y. Kim, S. Lee, R. Ma, M. Lim, T.K. Kim, Hydrogenation of 4-nitrophenol to 4-aminophenol at room temperature: Boosting palladium nanocrystals efficiency by coupling with copper via liquid phase pulsed laser ablation, Appl. Surf. Sci., 401 (2017) 314–322.
  13. J.R. Chiou, B.H. Lai, K.C. Hsu, D.H. Chen, One-pot green synthesis of silver/iron oxide composite nanoparticles for 4-nitrophenol reduction, J. Hazard. Mater., 248–249 (2013) 394–400.
  14. S. Bae, S. Gim, H. Kim, K. Hanna, Effect of NaBH4 on properties of nanoscale zero-valent iron and its catalytic activity for reduction of p-nitrophenol, Appl. Catalysis B: Environ., 182 (2016) 541–549.
  15. Z. Peng, C. Xiong, W. Wang, F. Tan, Y. Xu, X. Wang, X. Qiao, Facile modification of nanoscale zero-valent iron with high stability for Cr(VI) remediation, Sci. Total Environ., 596–597 (2017) 266–273.
  16. H. Lu, J. Chen, Z. Xiao, X. Qiao, F. Tan, W. Wang, Chitosan stabilised nanozero-valent iron for the catalytic reduction of p-nitrophenol, Micro Nano Lett., 9 (2014) 446–450.
  17. Q. Wang, H. Qian, Y. Yang, Z. Zhang, C. Naman, X. Xu, Reduction of hexavalent chromium by carboxymethyl cellulose-stabilized zero-valent iron nanoparticles, J. Contam. Hydrol., 114 (2010) 35–42.
  18. T. Long, C.A. Ramsburg, Encapsulation of nZVI particles using a Gum Arabic stabilized oil-in-water emulsion, J. Hazard. Mater., 189 (2011) 801–808.
  19. P. Tartaj, C.J. Serna, Synthesis of monodisperse superparamagnetic Fe/Silica nanospherical composites, J. Am. Chem. Soc., 125 (2003) 15754–15755.
  20. Z. Niu, Y. Li, Removal and utilization of capping agents in nanocatalysis, Chem. Mater., 26 (2014) 72–83.
  21. S. Gu, W. Wang, F. Tan, J. Gu, X. Qiao, J. Chen, Facile route to hierarchical silver microstructures with high catalytic activity for the reduction of p-nitrophenol, Mater. Res. Bull., 49 (2014) 138–143.
  22. L. Ai, C. Zeng, Q. Wang, One-step solvothermal synthesis of Ag-Fe3O4 composite as a magnetically recyclable catalyst for reduction of Rhodamine B, Catal. Commun., 14 (2011) 68–73.
  23. V.K. Gupta, M.L. Yola, T. Eren, F. Kartal, M.O. Çağlayan, N. Atar, Catalytic activity of Fe@Ag nanoparticle involved calcium alginate beads for the reduction of nitrophenols, J. Mol. Liq., 190 (2014) 133–138.
  24. Z. Wang, W. Huang, P.a. Peng, D.E. Fennell, Rapid dechlorination of 1,2,3,4-TCDD by Ag/Fe bimetallic particles, Chem. Eng. J., 273 (2015) 465–471.
  25. L. Lu, W. Zhang, D. Wang, X. Xu, J. Miao, Y. Jiang, Fe@Ag core– shell nanoparticles with both sensitive plasmonic properties and tunable magnetism, Mater. Lett., 64 (2010) 1732–1734.
  26. H. Wu, Q. Feng, H. Yang, E. Alam, B. Gao, D. Gu, Modified biochar supported Ag/Fe nanoparticles used for removal of cephalexin in solution: Characterization, kinetics and mechanisms, Colloids Surf. A: Physicochem. Eng., 517 (2017) 63–71.
  27. X. Nie, J. Liu, X. Zeng, D. Yue, Rapid degradation of hexachlorobenzene by micron Ag/Fe bimetal particles, J. Environ. Sci., 25 (2013) 473–478.
  28. J. Shen, Z. Li, Q. Yan, Y. Chen, Reactions of bivalent metal ions with borohydride in aqueous solution for the preparation of ultrafine amorphous alloy particles, Cheminform, 24 (1993) 8504–8511.
  29. S.G. Bratsch, Standard electrode potentials and temperature coefficients in water at 298.15 K, J. Phys. Chem. Ref. Data, 18 (1989) 1–21.
  30. G. Milazzo, Table of standard electrode potentials, J. Electro- Chem. Soc., 125 (1978) 261C.
  31. C.Q. Tran, C.T. Chantler, Z. Barnea, M.D.d. Jonge, B.B. Dhal, C.T.Y. Chung, D. Paterson, J. Wang, Measurement of the X-ray mass attenuation coefficient of silver using the x-ray-extended range technique, J. Phys. B: At. Mol. Opt. Phys., 38 (2005) 89–107.
  32. P. Venkatesan, N. Puvvada, R. Dash, B.N.P. Kumar, D. Sarkar, B. Azab, A. Pathak, S.C. Kundu, P.B. Fisher, M. Mandal, The potential of celecoxib-loaded hydroxyapatite-chitosan nano composite for the treatment of colon cancer, Biomaterials, 32 (2011) 3794–3806.
  33. W. Wang, W. Li, C. Gao, W. Tian, B. Sun, D. Yu, A novel preparation of silver-plated polyacrylonitrile fibers functionalized with antibacterial and electromagnetic shielding properties, Appl. Surf. Sci., 342 (2015) 120–126.
  34. W. Duane, H. Fricke, W. Stenström, The absorption of X-rays by chemical elements of high atomic numbers, Proc. Natl. Acad. Sci. U.S.A., 6 (1920) 607.
  35. H. Hu, J.H. Xin, H. Hu, X. Wang, D. Miao, Y. Liu, Synthesis and stabilization of metal nanocatalysts for reduction reactions – a review, J. Mater. Chem. A, 3 (2015) 11157–11182.
  36. M. Wang, D. Tian, P. Tian, L. Yuan, Synthesis of micron-SiO2@ nano-Ag particles and their catalytic performance in 4-nitrophenol reduction, Appl. Surf. Sci., 283 (2013) 389–395.
  37. F. Peng, Q. Wang, R. Shi, Z. Wang, X. You, Y. Liu, F. Wang, J. Gao, C. Mao, Fabrication of sesame sticks-like silver nanoparticles/ polystyrene hybrid nanotubes and their catalytic effects, Sci. Rep., 6 (2016) 39502.
  38. S. Jana, S. Ghosh, S. Nath, S. Pande, S. Praharaj, S. Panigrahi, S. Basu, T. Endo, T. Pal, Synthesis of silver nanoshell-coated cationic polystyrene beads: A solid phase catalyst for the reduction of 4-nitrophenol, Appl. Catalysis A: General, 313 (2006) 41–48.
  39. Z. Dai, X. Xiao, W. Wu, Y. Zhang, L. Liao, S. Guo, J. Ying, C. Shan, M. Sun, C. Jiang, Plasmon-driven reaction controlled by the number of graphene layers and localized surface plasmon distribution during optical excitation, Light Sci. Appl., 4 (2015) e342.
  40. Y. Wu, X. Liu, D. Han, X. Song, L. Shi, Y. Song, S. Niu, Y. Xie, J. Cai, S. Wu, J. Kang, J. Zhou, Z. Chen, X. Zheng, X. Xiao, G. Wang, Electron density modulation of NiCo2S4 nanowires by nitrogen incorporation for highly efficient hydrogen evolution catalysis, Nat. Commun, 9 (2018) 1425.
  41. H. Wu, Q. Feng, Fabrication of bimetallic Ag/Fe immobilized on modified biochar for removal of carbon tetrachloride, J. Environ. Sci., 54 (2017) 346–357.
  42. S. Gu, S. Wunder, Y. Lu, M. Ballauff, R. Fenger, K. Rademann, B. Jaquet, A. Zaccone, Kinetic analysis of the catalytic reduction of 4-nitrophenol by metallic nanoparticles, J. Phys. Chem. C, 118 (2014) 18618–18625.
  43. P. Zhao, X. Feng, D. Huang, G. Yang, D. Astruc, Basic concepts and recent advances in nitrophenol reduction by gold- and other transition metal nanoparticles, Coord. Chem. Rev., 287 (2015) 114–136.
  44. N. Jadbabaei, R.J. Slobodjian, D. Shuai, H. Zhang, Catalytic reduction of 4-nitrophenol by palladium-resin composites, Appl. Catal. A, Gen, 543 (2017) 209–217.
  45. N.C. Antonels, R. Meijboom, Preparation of well-defined dendrimer encapsulated ruthenium nanoparticles and their evaluation in the reduction of 4-nitrophenol according to the Langmuir–Hinshelwood approach, Langmuir, 29 (2013) 13433–13442.
  46. T. Aditya, A. Pal, T. Pal, Nitroarene reduction: a trusted model reaction to test nanoparticle catalysts, Chem. Commun., 51 (2015) 9410–9431.