1. B. Karimi, M.-S. Rajaei, A. Koulivand, R.D. Cheshmeh Soltani, Performance evaluation of advanced Fe°/Fe2+/Fe3+/H2O2 process in the reduction of nitrate and organic matter from aqueous solution, Desal. Wat. Treat., 52 (2014) 6240–6248.
  2. M. Ward, R. Jones, J. Brender, T. de Kok, P. Weyer, B. Nolan, C. Villanueva, S. van Breda, Drinking water nitrate and human health: an updated review, Int. J. Environ. Res., 15 (2018) 1557.
  3. U.S. EPA (Environmental Protection Agency), Chemical Contaminant Rules, 2012. Available at: (Accessed 15 May 2018).
  4. S. Tyagi, D. Rawtani, N. Khatri, M. Tharmavaram, Strategies for nitrate removal from aqueous environment using nanotechnology: a review, J. Water Process Eng., 21 (2018) 84–95.
  5. M. Islam, P.C. Mishra, R. Patel, Physicochemical characterization of hydroxyapatite and its application towards removal of nitrate from water, J. Environ. Manage., 91 (2010) 1883–1891.
  6. K. Ravikumar, S. Dubey, N. Chandrasekaran, A. Mukherjee, Scale-up synthesis of zero-valent iron nanoparticles and their applications for synergistic degradation of pollutants with sodium borohydride, J. Mol. Liq., 224 (2016) 589–598.
  7. M. Stefaniuk, P. Oleszczuk, Y.S. Ok, Review on nano zerovalent iron (nZVI): from synthesis to environmental applications, Chem. Eng. J., 287 (2016) 618–632.
  8. M. Fan, J. Hu, R. Cao, K. Xiong, X. Wei, Modeling and prediction of copper removal from aqueous solutions by nZVI/rGO magnetic nanocomposites using ANN-GA and ANN-PSO, Sci. Rep., 7 (2017) 18040.
  9. S. Machado, S. Pinto, J. Grosso, H. Nouws, J.T. Albergaria, C. Delerue-Matos, Green production of zero-valent iron nanoparticles using tree leaf extracts, Sci. Total Environ., 445 (2013) 1–8.
  10. X. Zhao, W. Liu, Z. Cai, B. Han, T. Qian, D. Zhao, An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation, Water Res., 100 (2016) 245–266.
  11. X. Shi, W. Ruan, J. Hu, M. Fan, R. Cao, X. Wei, Optimizing the removal of rhodamine B in aqueous solutions by reduced graphene oxide-supported nanoscale zerovalent iron (nZVI/ rGO) using an artificial neural network-genetic algorithm (ANN-GA), Nanomaterials, 7 (2017) 134.
  12. L. Li, J. Hu, X. Shi, M. Fan, J. Luo, X. Wei, Nanoscale zero-valent metals: a review of synthesis, characterization, and applications to environmental remediation, Environ. Sci. Pollut. Res., 23 (2016) 17880–17900.
  13. C. Gu, H. Jia, H. Li, B.J. Teppen, S.A. Boyd, Synthesis of highly reactive subnano-sized zero-valent iron using smectite clay templates, Environ. Sci. Technol., 44 (2010) 4258–4263.
  14. C.J. Lin, S.L. Lo, Y.H. Liou, Dechlorination of trichloroethylene in aqueous solution by noble metal-modified iron, J. Hazard. Mater., 116 (2004) 219–228.
  15. M. Fan, T. Li, J. Hu, R. Cao, X. Wei, X. Shi, W. Ruan, Artificial neural network modeling and genetic algorithm optimization for cadmium removal from aqueous solutions by reduced graphene oxide-supported nanoscale zero-valent iron (nZVI/rGO) composites, Materials, 10 (2017) 544.
  16. T. Liu, L. Zhao, D. Sun, X. Tan, Entrapment of nanoscale zerovalent iron in chitosan beads for hexavalent chromium removal from wastewater, J. Hazard. Mater., 184 (2010) 724–730.
  17. L.E. De-Bashan, Y. Bashan, Immobilized microalgae for removing pollutants: review of practical aspects, Bioresour. Technol., 101 (2010) 1611–1627.
  18. A.N. Bezbaruah, S.S. Shanbhogue, S. Simsek, E. Khan, Encapsulation of iron nanoparticles in alginate biopolymer for trichloroethylene remediation, J. Nanopart. Res., 13 (2011) 6673–6681.
  19. B. Wang, B. Gao, A.R. Zimmerman, Y. Zheng, H. Lyu, Novel biochar-impregnated calcium alginate beads with improved water holding and nutrient retention properties, J. Environ. Manage., 209 (2018) 105–111.
  20. L. Yang, L. Lv, S. Zhang, B. Pan, W. Zhang, Catalytic dechlorination of monochlorobenzene by Pd/Fe nanoparticles immobilized within a polymeric anion exchanger, Chem. Eng. J., 178 (2011) 161–167.
  21. Y.-H. Hwang, D. Kim, Y. Ahn, C.-M. Moon, H.-S. Shin, Fate of nitrogen species in nitrate reduction by nanoscale zero valent iron and characterization of the reaction kinetics, Water Sci. Technol., 61 (2010) 705–712.
  22. WEF, APHA, Standard methods for the examination of water and wastewater, American Public Health Association (APHA), Washington, D.C., USA, 2005.
  23. J.A. Kumara, D.J. Amarnatha, P.S. Kumarb, C.S. Kaushika, M.E. Varghesea, A. Saravananc, Mass transfer and thermodynamic analysis on the removal of naphthalene from aqueous solution using oleic acid modified palm shell activated carbon, Desal. Wat. Treat., 106 (2018) 238–250.
  24. A.N. Bezbaruah, S. Krajangpan, B.J. Chisholm, E. Khan, J.J.E. Bermudez, Entrapment of iron nanoparticles in calcium alginate beads for groundwater remediation applications, J. Hazard. Mater., 166 (2009) 1339–1343.
  25. S. Kanel, R. Goswami, T. Clement, M. Barnett, D. Zhao, Two dimensional transport characteristics of surface stabilized zero-valent iron nanoparticles in porous media, Environ. Sci. Technol., 42 (2007) 896–900.
  26. Y.H. Huang, T.C. Zhang, Effects of low pH on nitrate reduction by iron powder, Water Res., 38 (2004) 2631–2642.
  27. Y. Hwang, D. Kim, Y. Ahn, C. Moon, H. Shin, Fate of nitrogen species in nitrate reduction by nanoscale zero valent iron and characterization of the reaction kinetics, Water Sci. Technol., 61 (2010) 705–712.
  28. Y.-M. Chen, C.-W. Li, S.-S. Chen, Fluidized zero valent iron bed reactor for nitrate removal, Chemosphere, 59 (2005) 753–759.
  29. Y.-U. Han, C.-G. Lee, J.-A. Park, J.-K. Kang, I. Lee, S.-B. Kim, Immobilization of layered double hydroxide into polyvinyl alcohol/alginate hydrogel beads for phosphate removal, Environ. Eng. Res., 17 (2012) 133–138.
  30. H. Park, Y.M. Park, S.K. Oh, K.M. You, S.H. Lee, Enhanced reduction of nitrate by supported nanoscale zero‐valent iron prepared in ethanol‐water solution, Environ. Technol., 30 (2009) 261–267.
  31. Z. Jiang, L. Lv, W. Zhang, Q. Du, B. Pan, L. Yang, Q. Zhang, Nitrate reduction using nanosized zero-valent iron supported by polystyrene resins: role of surface functional groups, Water Res., 45 (2011) 2191–2198.
  32. K.P. Singh, A.K. Singh, S. Gupta, Optimization of nitrate reduction by EDTA catalyzed zero-valent bimetallic nanoparticles in aqueous medium, Environ. Sci. Pollut. Res., 19 (2012) 3914–3924.
  33. Y.-H. Hwang, D.-G. Kim, H.-S. Shin, Mechanism study of nitrate reduction by nano zero valent iron, J. Hazard. Mater., 185 (2011) 1513–1521.