References

  1. J. Phattaranawik, A.G. Fane, F.S. Wong, Novel membranebased sensor for online membrane integrity monitoring, J. Membr. Sci., 232 (2008) 113–124.
  2. J.M. Laîne, K. Glucina, M. Chamant, P. Simonie, Acoustic sensor: a novel technique for low pressure membrane, Desalination, 119 (1998) 73–77.
  3. M.W. Phillips, A.J. DiLeo, A validatable porosimetric technique for verifying the integrity of virus-retentive membranes, Biologicals, 24 (1996) 243–253.
  4. G.F. Crozes, S. Sethi, B. Mi, J. Curl, B. Marinas, Improving membrane integrity monitoring indirect methods to reduce plant downtime and increase microbial removal credit, Desalination, 149 (2002) 493–497.
  5. W.B. Krantz, C.S. Lin, P.C.Y. Sin, A. Yeo, A.G. Fane, An integrity sensor for assessing the performance of low pressure membrane modules in the water industry, Desalination, 283 (2011) 117–122.
  6. J. Kim, C. Lee, S. Park, Artificial neural network-based early-age concrete strength monitoring using dynamic response signals, Sensors, 17 (2017) 1319.
  7. C. Lee, J. Kim, S. Park, D.H. Kim, Advanced fatigue crack detection using nonlinear self-sensing impedance technique for automated NDE of metallic structures, Res. Nondestr. Eval., 26 (2015) 107–121.
  8. S. Park, D.J. Inman, J.J. Lee, C.B. Yun, Piezoelectric sensor-based health monitoring of railroad track using a two-step support vector machine classifier, J. Infrastruct. Syst., 14 (2008) 80–88.
  9. S. Bhalla, C.K. Soh, Structural health monitoring by piezoimpedance transducers, I: modeling, J. Aerosp. Eng., 17 (2004) 154–165.
  10. V. Giurgiutiu, C.A. Rogers, Modeling of the Electro-mechanical (E/M) Impedance Response of a Damaged Composite Beam, ASME Winter Annual Meeting, ASME Aerospace and Materials Divisions, Adaptive Structures and Material Systems, Vol. 59, ASME Aerospace Division, Nashville, TN, 1999, pp. 39–46.
  11. C. Liang, F.P. Sun, C.A. Rogers, Electro-mechanical impedance modeling of active material systems, Smart Mater. Struct., 5 (1996) 171–186.
  12. S.J. Lee, H. Sohn, Active self-sensing scheme development for structural health monitoring, Smart Mater. Struct., 15 (2006) 1734–1746.
  13. S.J. Lee, H. Sohn, J.W. Hong, Time reversal based piezoelectric transducer self-diagnosis under varying temperature, J. Nondestr. Eval., 29 (2010) 75–91.
  14. V. Giurgiutiu, A.N. Zagrai, J.J. Bao, Piezoelectric wafer embedded active sensors for aging aircraft structural health monitoring, Struct. Health Monit., 1 (2002) 41–61.
  15. A. Raghavan, C.E.S. Cesnik, Review of guided-wave structural health monitoring, Shock Vib. Dig., 39 (2007) 91–114.
  16. J.L. Rose, Ultrasonic guided waves in structural health monitoring, Key Eng. Mater., 270–273 (2004) 14– 21.
  17. J.W. Kim, J. Kim, S. Park, T.K. Oh, Integrating embedded piezoelectric sensors with continuous wavelet transforms for real-time concrete curing strength monitoring, Struct. Infrastruct. Eng., 11 (2015) 897–903.