1. S.J. Kulkarni, J.P. Kaware, Adsorption for cadmium removal from effluent - a review, Int. J. Sci. Eng. Technol. Res., 2 (2013) 1840–1844.
  2. U.M. Jibesh Datta, A comparative study of chromium and cadmium removal from their common aqueous solution by batch operation using tea factory waste as an adsorbent, Int. J. Eng. Res. Appl., 4 (2014) 98–105.
  3. S.-A. Ong, C.-E. Seng, P. Lim, Kinetics of adsorption of Cu (II) and Cd (II) from aqueous solution on rice husk and modified rice husk, Electron. J. Environ. Agric. Food Chem., 6 (2007) 1764–1774.
  4. A.J.M. Barros, S. Prasad, V.D. Leite, A.G. Souza, The process of biosorption of heavy metals in bioreactors loaded with sanitary sewage sludge, Braz. J. Chem. Eng., 23 (2006) 153–162.
  5. E.A. Silva, L.G.L. Vaz, M.T. Veit, M.R. Fagundes-Klen, E.S. Cossich, C.R.G. Tavares, L. Cardozo-Filho, R. Guirardello, Biosorption of chromium(III) and copper(II) ions onto marine alga Sargassum sp. in a fixed-bed column, Adsorpt. Sci. Technol., 28 (2010) 449–464.
  6. Z.R. Holan, B. Volesky, Biosorption of lead and nickel by biomass of marine algae, Biotechnol. Bioeng., 43 (1994) 1001–1009.
  7. APHA, Water Environment Federation and American Water Works Association, Standard Methods for the Examination of Water and Wastewater Part 4000 Inorganic Nonmetallic Constituents Standard Methods for the Examination of Water and Wastewater, 1999, 733 pp.
  8. R. Ali, Study on Removal of Cadmium from Water Environment by Adsorption on Gac, Bac and biofilter, Diffuse Pollution Conference, Vol. 1, 2003, pp. 35–39.
  9. M.C. Henson, P.J. Chedrese, Endocrine disruption by cadmium, a common environmental toxicant with paradoxical effects on reproduction., Exp. Biol. Med. (Maywood), 229 (2004) 383–392.
  10. H.K. Boparai, M. Joseph, D.M. O’Carroll, Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles, J. Hazard. Mater., 186 (2011) 458–465.
  11. U. Kumar, Agricultural products and by-products as a low cost adsorbent for heavy metal removal from water and wastewater: a review, Sci. Res. Essay, 1 (2006) 33–37.
  12. P. Kaewsarn, Q. Yu, Cadmium(II) removal from aqueous solutions by pre-treated biomass of marine alga Padina sp., Environ. Pollut., 112 (2001) 209–213.
  13. G.H. Azarian, A.R. Mesdaghinia, F. Vaezi, R. Nabizadeh, D. Nematollahi, Algae removal by electro-coagulation process application for treatment of the effluent from an industrial wastewater treatment plant, Iran. J. Public Health, 36 (2007) 57–64.
  14. Y.S. Dzyazko, V.N. Belyakov, Purification of a diluted nickel solution containing nickel by a process combining ion exchange and electrodialysis, Desalination, 162 (2004) 179–189.
  15. V.C. Srivastava, I.D. Mall, I.M. Mishra, Removal of cadmium(II) and zinc(II) metal ions from binary aqueous solution by rice husk ash, Colloids Surf., A, 312 (2008) 172–184.
  16. M. Mohsen-Nia, P. Montazeri, H. Modarress, Removal of Cu2+ and Ni2+ from wastewater with a chelating agent and reverse osmosis processes, Desalination, 217 (2007) 276–281.
  17. G.T. Ballet, L. Gzara, A. Hafiane, M. Dhahbi, Transport coefficients and cadmium salt rejection in nanofiltration membrane, Desalination, 167 (2004) 369–376.
  18. M. Ulewicz, W. Walkowiak, Separation of zinc and cadmium ions from sulfate solutions by ion flotation and transport through liquid membranes, Fizykochem. Probl. Miner., 37 (2003) 77–86.
  19. T.J. Butter, L.M. Evison, I.C. Hancock, F.S. Holland, K.A. Matis, A. Philipson, A.I. Sheikh, A.I. Zouboulis, The removal and recovery of cadmium from dilute aqueous solutions by biosorption and electrolysis at laboratory scale, Water Res., 32 (1998) 400–406.
  20. B. Swain, K. Sarangi, R. Prasad Das, Separation of cadmium and zinc by supported liquid membrane using TOPS‐99 as mobile carrier, Sep. Sci. Technol., 39 (2005) 2171–2188.
  21. B. Swain, K. Sarangi, R.P. Das, Effect of different anions on separation of cadmium and zinc by supported liquid membrane using TOPS-99 as mobile carrier, J. Membr. Sci., 277 (2006) 240–248.
  22. A.Ö. Saf, S. Alpaydin, A. Coskun, M. Ersoz, Selective transport and removal of Cr(VI) through polymer inclusion membrane containing 5-(4-phenoxyphenyl)-6H-1,3,4-thiadiazin-2-amine as a carrier, J. Membr. Sci., 377 (2011) 241–248.
  23. R.F. Karimi, A study of the heavy metal extraction process using emulsion liquid membranes, Master’s thesis, no. Chalmers University of Technology, Göteborg, Sweden, 2012, pp. 1–61.
  24. V.S. Kislk, Liquid Membrane Principles and Application in Chemical Separation and Waste Water Treatment, First Edition, Burlington, Elsevier, 2010.
  25. Y.-S. Park, T.-S. Chon, I.-S. Kwak, S. Lek, Hierarchical community classification and assessment of aquatic ecosystems using artificial neural networks, Sci. Total Environ., 327 (2004) 105–122.
  26. L. Belanche, J.J. Valdes, J. Comas, I.R. Roda, M. Poch, Prediction of the bulking phenomenon in wastewater treatment plants, Artif. Intell. Eng., 14 (2000) 307–317.
  27. G.R. Shetty, S. Chellam, Predicting membrane fouling during municipal drinking water nanofiltration using artificial neural networks, J. Membr. Sci., 217 (2003) 69–86.
  28. E.S. Elmolla, M. Chaudhuri, M.M. Eltoukhy, The use of artificial neural network (ANN) for modeling of COD removal from antibiotic aqueous solution by the Fenton process, J. Hazard. Mater., 179 (2010) 127–134.
  29. M. Cote, B. Grandjean, P. Lessard, J. Thibault, Dynamic modelling of the activated sludge process: improving prediction using neural networks, Water Res., 29 (1995) 995–1004.
  30. C. Gontarski, P. Rodrigues, Simulation of an industrial wastewater treatment plant using artificial neural networks, Comput. Chem. Eng., 24 (2000) 1719–1723.
  31. A. Kardam, K.R. Raj, J.K. Arora, S. Srivastava, ANN modeling on predictions of biosorption efficiency of zea mays for the removal of Cr (III) and Cr (VI) from waste water, Int. J. Math. Trends Technol., (2011) 23–29.
  32. J. Kabuba, A.F. Mulaba-bafubiandi, The Use of Neural Network for Modeling of Copper Removal from Aqueous Solution by the Ion-Exchange Process, International Conference on Mining, Mineral Processing and Metallurgical Engineering (ICMMME’2013), Johannesburg, SouthAfrica, April 15–16, 2013, pp. 131–135.
  33. H.M. Madhloom, Modeling of Copper removal from simulated wastewater by adsorption on to fungal biomass using artificial neural network, Glob. J. Adv. Pure Appl. Sci., 5 (2015) 35–44.
  34. A. Kardam, Artificial neural network modeling for sorption of cadmium from aqueous system by shelled Moringa oleifera seed powder as an agricultural waste, J. Water Resour. Prot., 2 (2010) 339–344.
  35. M. Fan, J. Hu, R. Cao, K. Xiong, X. Wei, Modeling and prediction of copper removal from aqueous solutions by nZVI/rGO magnetic nanocomposites using ANN-GA and ANN-PSO, Sci. Rep., 7 (2017) 18040.
  36. X. Shi, W. Ruan, J. Hu, M. Fan, R. Cao, X. Wei, Optimizing the removal of rhodamine B in aqueous solutions by reduced graphene oxide-supported nanoscale zerovalent iron (nZVI/ rGO) using an artificial neural network-genetic algorithm (ANN-GA), Nanomaterials, 7 (2017) 134.
  37. M. Fan, T. Li, J. Hu, R. Cao, X. Wei, X. Shi, W. Ruan, Artificial neural network modeling and genetic algorithm optimization for cadmium removal from aqueous solutions by reduced graphene oxide-supported nanoscale zero-valent iron (nZVI/ rGO) composites, Materials (Basel), 10 (2017) 544.
  38. D. Bastani, M.E. Hamzehie, F. Davardoost, S. Mazinani, A. Poorbashiri, Prediction of CO2 loading capacity of chemical absorbents using a multi-layer perceptron neural network, Fluid Phase Equilib., 354 (2013) 6–11.
  39. V. Eyupoglu, Ağır Metallerin Seçici Ekstraksiyonu için İmidazolyum Tuzları İçeren Polimer İçerikli Membranların Üretimi Karakterizasyonu ve Taşınım Verimlerinin Yapay Sinir Ağları ile Modellenmesi, Grant No: TBAG-112T806, Sci. Technol. Res. Counc. Turkey (TÜBİTAK), (2015).
  40. M. Zawadzki, L. Niedzicki, W. Wieczorek, U. Domańska, Estimation of extraction properties of new imidazolide anion based ionic liquids on the basis of activity coefficient at infinite dilution measurements, Sep. Purif. Technol., 118 (2013) 242–254.
  41. B. Wassink, D. Dreisinger, J. Howard, Solvent extraction separation of zinc and cadmium from nickel and cobalt using Aliquat 336, a strong base anion exchanger, in the chloride and thiocyanate forms, Hydrometallurgy, 57 (2000) 235–252.
  42. H.I. Turgut, V. Eyupoglu, R.A. Kumbasar, I. Sisman, Alkyl chain length dependent Cr(VI) transport by polymer inclusion membrane using room temperature ionic liquids as carrier and PVDF-co-HFP as polymer matrix, Sep. Purif. Technol., 175 (2017) 406–417.
  43. V. Eyupoglu, E. Polat, Evaluation of Cd(II) transport with imidazolium bromides bearing butyl and isobutyl groups as extractants from acidic iodide solutions by liquid-liquid solvent extraction, Fluid Phase Equilib., 394 (2015) 46–60.
  44. Y. Zhang, D. Guo, Z. Li, Common nature of learning between back-propagation and hopfield-type neural networks for generalized matrix inversion with simplified models, IEEE Trans. Neural Networks Learn. Syst., 24 (2013) 579–592.
  45. S. Liu, L. Xu, D. Li, Multi-scale prediction of water temperature using empirical mode decomposition with back-propagation neural networks, Comput. Electr. Eng., 49 (2016) 1–8.
  46. N. An, W. Zhao, J. Wang, D. Shang, E. Zhao, Using multioutput feedforward neural network with empirical mode decomposition based signal filtering for electricity demand forecasting, Energy, 49 (2013) 279–288.
  47. Y. Srinivas, A.S. Raj, D.H. Oliver, D. Muthuraj, N. Chandrasekar, A robust behavior of Feed Forward Back propagation algorithm of artificial neural networks in the application of vertical electrical sounding data inversion, Geosci. Front., 3 (2012) 729–736.
  48. Z.C. Lipton, A Critical Review of Recurrent Neural Networks for Sequence Learning, arXiv Prepr., 4 (2015) 1–35.
  49. E.A. Nadaraya, On Estimating Regression, Theory of Probability and Its Applications, 9 (1964) 141–142.
  50. G.S. Watson, Smooth regression analysis, Indian J. Stat., 26 (1964) 359–372.
  51. H. Schløler, U. Hartmann, Mapping neural network derived from the Parzen window estimator, Neural Networks, 5 (1992) 903–909.
  52. M.H. Ali, M. Park, I.K. Yu, T. Murata, J. Tamura, B. Wu, Enhancement of transient stability by fuzzy logic-controlled SMES considering communication delay, Int. J. Electr. Power Energy Syst., 31 (2009) 402–408.
  53. Z. Mingyu, D. Coggeshall, E. Ghaneie, T. Pope, M. Rivera, M. Georgiopoulos et al., Gap-based estimation: Choosing the smoothing parameters for probabilistic and general regression neural networks, Neural Comput., 19 (2007) 2840–2864.
  54. Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature, 521 (2015) 436.
  55. A.J. Al-Mahasneh, S.G. Anavatti, M.A. Garratt, Review of Applications of Generalized Regression Neural Networks in Identification and Control of Dynamic Systems, arXiv Prepr., (2018).
  56. A.L. Betker, T. Szturm, Z. Moussavi, Application of Feedforward Backpropagation Neural Network to Center of Mass Estimation for Use in a Clinical Environment, in Engineering in Medicine and Biology Society, Proc. 25th Annual International Conference of the IEEE, Vol. 3, 2003, pp. 2714–2717.
  57. G.J. Bowden, G.C. Dandy, H.R. Maier, Input determination for neural network models in water resources applications. Part 1—background and methodology, J. Hydrol., 301 (2005) 75–92.
  58. G.J. Bowden, H.R. Maier, G.C. Dandy, Input determination for neural network models in water resources applications. Part 2. Case study: forecasting salinity in a river, J. Hydrol., 301 (2005) 93–107.
  59. F. Benvenuto, A. Marani, Neural networks for environmental problems: data quality control and air pollution nowcasting, Glob. NEST Int. J., 2 (2000) 281–292.
  60. M. Firat, M. Gungor, Generalized regression neural networks and feed forward neural networks for prediction of scour depth around bridge piers, Adv. Eng. Softw., 40 (2009) 731–737.
  61. A.A. Konate, H. Pan, N. Khan, J.H. Yang, Generalized regression and feed-forward back propagation neural networks in modelling porosity from geophysical well logs, J. Pet. Explor. Prod. Technol., 5 (2015) 157–166.
  62. S. Asante-Okyere, Q. Xu, R.A. Mensah, C. Jin, Y.Y. Ziggah, Generalized regression and feed forward back propagation neural networks in modelling flammability characteristics of polymethyl methacrylate (PMMA), Thermochim. Acta, 667 (2018) 79–92.
  63. H. Jaeger, Artificial Neural Networks, Talk, 17 (2008) 281–289.
  64. M.R. Dehghani, H. Modarress, A. Bakhshi, Modeling and prediction of activity coefficient ratio of electrolytes in aqueous electrolyte solution containing amino acids using artificial neural network, Fluid Phase Equilib., 244 (2006) 153–159.
  65. E. Dogan, A. Ates, E.C. Yilmaz, B. Eren, Application of artificial neural networks to estimate wastewater treatment plant inlet bochemical oxygen demand, Environ. Prog., 27 (2008) 439–446.
  66. R. Haghbakhsh, H. Hayer, M. Saidi, S. Keshtkari, F. Esmaeilzadeh, Density estimation of pure carbon dioxide at supercritical region and estimation solubility of solid compounds in supercritical carbon dioxide: correlation approach based on sensitivity analysis, Fluid Phase Equilib., 342 (2013) 31–41.
  67. R.H. Myers, S.L. Myers, Probability & Statistics for Engineers & Scientists, Pearson Prentice Hall, Vol. 6, 2007.
  68. A. Giacomino, O. Abollino, M. Malandrino, E. Mentasti, The role of chemometrics in single and sequential extraction assays: a review. Part II. Cluster analysis, multiple linear regression, mixture resolution, experimental design and other techniques, Anal. Chim. Acta., 688 (2011) 122–139.
  69. I. Yildirim, S. Ozsahin, K.C. Akyuz, Prediction of the financial return of the paper sector with artificial neural networks, BioResources, 6 (2011) 4076–4091.