1. J. Meier-Haack, N.A. Booker, T. Carroll, A permeabilitycontrolled microfiltration membrane for reduced fouling in drinking water treatment, Water Res., 37 (2003) 585–588.
  2. A. Bottino, C. Capannelli, A. Del Borghi, M. Colombino, O. Conio, Water treatment for drinking purpose: ceramic microfiltration application, Desalination, 141 (2001) 75–79.
  3. C. Teodosiu, A.-F. Gilca, G. Barjoveanu, S. Fiore, Emerging pollutants removal through advanced drinking water treatment: a review on processes and environmental performances assessment, J. Cleaner Prod., 197 (2018) 1210–1221.
  4. T.R. Sinclair, D. Robles, B. Raza, S. van den Hengel, S.A. Rutjes, A.M. de Roda Husman, J. de Grooth, W.M. de Vos, H.D.W. Roesink, Virus reduction through microfiltration membranes modified with a cationic polymer for drinking water applications, Colloids Surf. A, 551 (2018) 33–41.
  5. S. Ebrahim, S. Bou-Hamed, M. Abdel-Jawad, N. Burney, Microfiltration system as a pretreatment for RO units: technical and economic assessment, Desalination, 109 (1997) 165–175.
  6. M.P.O. Gwenaelle, J. Jung, Y. Choi, S. Lee, Effect of microbubbles on microfiltration pretreatment for seawater reverse osmosis membrane, Desalination, 403 (2017) 153–160.
  7. A.F. Corral, U. Yenal, R. Strickle, D. Yan, E. Holler, C. Hill, W.P. Ela, R.G. Arnold, Comparison of slow sand filtration and microfiltration as pretreatments for inland desalination via reverse osmosis, Desalination, 334 (2014) 1–9.
  8. K.-L. Tung, Y.-L. Li, K.-J. Hwang, W.-M. Lu, Analysis and prediction of fouling layer structure in microfiltration, Desalination, 234 (2008) 99–106.
  9. Y. Zhang, Q. Fu, Algal fouling of microfiltration and ultrafiltration membranes and control strategies: a review, Sep. Purif. Technol., 203 (2018) 193–208.
  10. W. Gao, H. Liang, J. Ma, M. Han, Z.-l. Chen, Z.-s. Han, G.-b. Li, Membrane fouling control in ultrafiltration technology for drinking water production: a review, Desalination, 272 (2011) 1–8.
  11. M. Qasim, N.N. Darwish, S. Mhiyo, N.A. Darwish, N. Hilal, The use of ultrasound to mitigate membrane fouling in desalination and water treatment, Desalination, 443 (2018) 143–164.
  12. K.W. Trzaskus, A. Zdeb, W.M. de Vos, A. Kemperman, K. Nijmeijer, Fouling behavior during microfiltration of silica nanoparticles and polymeric stabilizers, J. Membr. Sci., 505 (2016) 205–215.
  13. S. Lee, P.-K. Park, J.-H. Kim, K.-M. Yeon, C.-H. Lee, Analysis of filtration characteristics in submerged microfiltration for drinking water treatment, Water Res., 42 (2008) 3109–3121.
  14. H. Chang, H. Liang, F. Qu, B. Liu, H. Yu, X. Du, G. Li, S.A. Snyder, Hydraulic backwashing for low-pressure membranes in drinking water treatment: a review, J. Membr. Sci., 540 (2017) 362–380.
  15. L. Li, Z.M. Wang, L.C. Rietveld, N.Y. Gao, J.Y. Hu, D.Q. Yin, S.L. Yu, Comparison of the effects of extracellular and intracellular organic matter extracted from Microcystis aeruginosa on ultrafiltration membrane fouling: dynamics and mechanisms, Environ. Sci. Technol., 48 (2014) 14549–14557.
  16. M. Rahimi, S.S. Madaeni, M. Abolhasani, A.A. Alsairafi, CFD and experimental studies of fouling of a microfiltration membrane, Chem. Eng. Process. Process Intens., 48 (2009) 1405–1413.
  17. Q.-F. Liu, S.-H. Kim, S. Lee, Prediction of microfiltration membrane fouling using artificial neural network models, Sep. Purif. Technol., 70 (2009) 96–102.
  18. M. Dalmau, N. Atanasova, S. Gabarrón, I. Rodriguez-Roda, J. Comas, Comparison of a deterministic and a data driven model to describe MBR fouling, Chem. Eng. J., 260 (2015) 300–308.
  19. K.-J. Hwang, C.-Y. Liao, K.-L. Tung, Analysis of particle fouling during microfiltration by use of blocking models, J. Membr. Sci., 287 (2007) 287–293.
  20. S. Giglia, G. Straeffer, Combined mechanism fouling model and method for optimization of series microfiltration performance, J. Membr. Sci., 417–418 (2012) 144–153.
  21. C. Panigrahi, S. Karmakar, M. Mondal, H.N. Mishra, S. De, Modeling of permeate flux decline and permeation of sucrose during microfiltration of sugarcane juice using a hollow-fiber membrane module, Innov. Food Sci. Emerg. Technol., 49 (2018) 92–105.
  22. M. Tan, G. He, F. Nie, L. Zhang, L. Hu, Optimization of ultrafiltration membrane fabrication using backpropagation neural network and genetic algorithm, J. Taiwan Inst. Chem. Eng., 45 (2014) 68–75.
  23. H. Shokrkar, A. Salahi, N. Kasiri, T. Mohammadi, Prediction of permeation flux decline during MF of oily wastewater using genetic programming, Chem. Eng. Res. Design, 90 (2012) 846–853.
  24. A.K. Yadav, H. Malik, S.S. Chandel, Selection of most relevant input parameters using WEKA for artificial neural network based solar radiation prediction models, Renew. Sustain. Energy Rev., 31 (2014) 509–519.
  25. A. Fouladitajar, F. Zokaee Ashtiani, A. Okhovat, B. Dabir, Membrane fouling in microfiltration of oil-in-water emulsions; a comparison between constant pressure blocking laws and genetic programming (GP) model, Desalination, 329 (2013) 41–49.
  26. B.I. Hrnjica, GPdotNET V4.0-artificial intelligence tool [Computer program], 2018.
  27. N. Parveen, S. Zaidi, M. Danish, Support vector regression model for predicting the sorption capacity of lead (II), Perspect. Sci., 8 (2016) 629–631.