References
  -  J. Jung, H. Park, M. Han, T. Kim, Importance of bubble bed
    characteristics in dissolved air flotation, KSCE J. Civ. Eng., 2013
    (2017) 1–5. 
-  Y. Hwang, M. Maeng, S. Dockko, Development of a hybrid
    system for advanced wastewater treatment using high-rate
    settling and a flotation system with ballasted media, Int.
    Biodeterior. Biodegrad., 113 (2016) 256–261. 
-  J. Haarhoff, Dissolved air flotation: progress and prospects for
    drinking water treatment, J. Water. Supply Res. Technol., 57
    (2008) 555–567. 
-  H.K. Shon, S. Vigneswaran, S.A. Snyder, Effluent organic matter
    (EfOM) in wastewater: constituents, effects, and treatment, Crit.
    Rev. Environ. Sci. Technol., 36 (2006) 327–374. 
-  B.H. Lee, W.C. Song, B. Manna, J.K. Ha, Dissolved ozone
    flotation (DOF) - a promising technology in municipal
    wastewater treatment, Desal. Wat. Treat., 225 (2008) 260–273. 
-  P.R. Wilinski, J. Naumczyk, Dissolved Ozone Flotation
    as a Innovative and Prospect Method for Treatment of
    Micropollutants and Wastewater Treatment Costs Reduction,
    12th ed., World Wide Workshop for Young Environmental
    Scientists, Arcueil, France, 2012, pp. 1–7. 
-  G.A. Oliveira, E. Carissimi, I. Monje-Ramirez, S.B. Velasquez-Orta, R.T. Rodrigues, M.T.O. Ledesma, Comparison between
    coagulation-flocculation and ozone-flotation for Scenedesmus
    microalgal biomolecule recovery and nutrient removal from
    wastewater in a High-Rate Algal Pond, Bioresour. Technol., 259
    (2018) 334–342. 
-  J.L. Graham, R. Striebich, C.L. Patterson, K.E. Radha, R.C. Haught,
    MTBE oxidation byproducts from the treatment of surface
    waters by ozonation and UV-ozonation, Chemosphere, 54
    (2004) 1011–1016. 
-  D.E. John, C.N. Hass, N. Nwachuku, C.P. Gerba, Chlorine and
    ozone disinfection of Encephalitozoon intestinalis spores, Water
    Res., 39 (2002) 2369–2375. 
-  L. Hu, Z. Xia, Application of ozone micro-nano-bubbles to
    groundwater remediation, J. Hazard. Mater., 342 (2018) 446–453. 
-  H. Selcuk, Decolorization and detoxification of textile
    wastewater by ozonation and coagulation processes, Dyes
    Pigm., 64 (2005) 217–222. 
-  H.Y. Shu, M.C. Chang, Decolorization effects of six azo dyes by
	  O3, UV/O3 and UV/H2O2 processes, Dyes Pigm., 65 (2005) 25–31. 
-  P. Bose, D.P. Saroj, A. Kumar, Enhancement in mineralization
    of some natural refractory organic compounds by ozonationaerobic
    biodegradation, J. Chem. Technol. Biotechnol., 81 (2005)
    115–127. 
-  P.K. Jin, X.C. Wang, G. Hu, A dispersed-ozone flotation (DOF)
    separator for tertiary wastewater treatment, Water Sci. Technol.,
    53 (2009) 151–157. 
-  X. Jin, P. Jin, R. Hou, L. Yang, X.C. Wang, Enhanced WWTP
    effluent organic matter removal in hybrid ozonationcoagulation
    (HOC) process catalyzed by Al-based coagulant,
    J. Hazard. Mater., 327 (2017) 216–224. 
-  S. Zhang, S. Gitungo, L. Axe, J.E. Dyksen, R.F. Raczko,
    A pilot plant study using conventional and advanced water
    treatment processes: evaluating removal efficiency of indicator
    compounds representative of pharmaceuticals and personal
    care products, Water Res., 105 (2016) 85–96. 
-  B.H. Lee, W.C. Song, H.Y. Kim, J.H. Kim, Enhanced separation of
    water quality parameters in the DAF (Dissolved Air Flotation)
    system using ozone, Water Sci. Technol., 56 (2007) 149–155. 
-  D. Ma, B. Gao, C. Xia, Y. Wang, Q. Yue, Q. Li, Effects of sludge
    retention times on reactivity of effluent dissolved organic matter
    for trihalomethane formation in hybrid powdered activated
    carbon membrane bioreactors, Bioresour. Technol., 166 (2014)
    381–388. 
-  American Public Health Association, Standard Methods for the
    Examination of Water and Wastewater, 20th ed., Washington,
    DC, 1998. 
-  C.C.D. Yao, W.R. Haag, Rate constants for direct reactions of
    ozone with several drinking water contaminants, Water Res., 25
    (1991) 761–773. 
-  M.S. Elovitz, U. von Gunten, Hydroxyl radical/ozone eatios
    during ozonation processes. I. The RCT concept, Ozone Sci.
    Eng., 21 (1999) 239–260. 
-  A. Azevedo, R. Etchepare, J. Rubio, Raw water clarification by
    flotation with microbubbles and nanobubbles generated with a
    multiphase pump, Water Sci. Technol., 75 (2017) 2342–2349. 
-  H.J.B. Couto, M.V. Melo, G. Massarani, Treatment of milk
    industry effluent by dissolved air flotation, Braz. J. Chem. Eng.,
    21 (2004) 83–91. 
-  S.J. Kim, J. Choi, Y.T. Jeon, I.C. Lee, C.H. Won, J. Chung,
    Microbubble-inducing characteristics depending on various
    nozzle and pressure in dissolved air flotation, Ksec J. Civ. Eng.,
    19 (2015) 558–563. 
-  S.E. de Rijk, Jaap H.J.M. aivan der Graaf, Jan G. den Blanken,
    Bubble size in flotation thickening, Water Res., 28 (1994)
    465–473. 
-  D. Reay, G.A. Ratcliff, Removal of fine particles from water by
    dispersed air flotation: Effects of bubble size and particle size on
    collection efficiency, Can. J. Chem. Eng., 51 (1973) 178–185. 
-  A.I. Zouboulis, A. Avranas, Treatment of oil-in-water emulsions
    by coagulation and dissolved-air flotation, Colloids Surf. A
    Physicochem. Eng. Asp., 172 (2000) 153–161. 
-  S. Calgaroto, A. Azevedo, J. Rubio, Separation of amineinsoluble
    species by flotation with nano and microbubbles,
    Min. Eng., 89 (2016) 24–29. 
-  J.K. Edzwald, Dissolved air flotation and me, Water Res., 44
    (2010) 2077–2106. 
-  D.M. Leppinen, S.B. Dalziel, Bubble size distribution in
    dissolved air flotation tanks, J. Water Supply Res. Technol., 53
    (2004) 531–543. 
-  R.T. Rodrigues, J. Rubio, New basis for measuring the size
    distribution of bubbles, Min. Eng., 16 (2003) 757–765. 
-  C.O. Rodrigues, Mecanismos De Floculação Com Polímeros
    Hidrossolúveis, Geração De Flocos Aerados, Floculação Em
    Núcleos De Bolhas Floculantes E Aplicações Na Separação De
    Partículas Modelos Por Flotação, PhD Thesis, 2010, p. 242. 
-  C. Oliveira, R.T. Rodrigues, J. Rubio, A new technique for
    characterizing aerated flocs in a flocculation- microbubble
    flotation system, Int. J. Miner. Process., 96 (2010) 36–44. 
-  J.K. Edzwald, Principles and applications of dissolved air
    flotation, Water Sci. Technol., 31 (1995) 1–23. 
-  Y. Hu, G. Qiu, J.D. Miller, Hydrodynamic interactions between
    particles in aggregation and flotation, Int. J. Miner. Process., 70
    (2003) 157–170. 
-  J. Haarhoff, J.K. Edzwald, Modelling of floc-bubble aggregate
    rise rates in dissolved air flotation, Water Sci. Technol., 43 (2001)
    175–184. 
-  R.T. Rodrigues, J. Rubio, Operating parameters affecting the
    formation of Kaolin aerated flocs in water and wastewater
    treatment, Clean-Soil Air Water, 42 (2014) 909–916. 
-  M.C. Bongiovani, F.C. Bonggiovani, P.F. Coldebella, K.C. Valverde,
    L. Nishi, R. Bergamasco, Removal of natural organic matter
    and trihalomethane minimization by coagulation/flocculation/
    filtration using a natural tannin, Desal. Wat. Treat., 57 (2016)
    5406–5415. 
-  T. Xu, C. Cui, C. Ma, Color composition in a water reservoir and
    DBPs formation following coagulation and chlorination during
    its conventional water treatment in northeast of China, Desal.
    Wat. Treat., 54 (2015) 1375–1384. 
-  J.A. Leenheer, Systematic Approaches to Comprehensive
    Analyses of Natural Organic Matter, Ann. Environ. Sci., 3 (2009)
    1–131. 
-  A. Ikhlaq, D.R. Brown, B. Kasprzyk-Hordern, Mechanisms of
    catalytic ozonation on alumina and zeolites in water: formation
    of hydroxyl radicals, Appl. Catal. B Environ., 123–124 (2012)
    94–106. 
-  F. Qi, Z. Chen, B. Xu, J. Shen, J. Ma, C. Joll, A. Heitz, Influence
    of surface texture and acid-base properties on ozone
    decomposition catalyzed by aluminum (hydroxyl) oxides,
    Appl. Catal. B Environ., 84 (2008) 684–690. 
-  L. Zhao, Z. Sun, J. Ma, Novel relationship between hydroxyl
    radical initiation and surface group of ceramic honeycomb
    supported metals for the catalytic ozonation of nitrobenzene in
	  aqueous solution, Environ. Sci. Technol., 43 (2009) 4157–4163.