References
  -  T. Shiao, T. Luo, D. Maggo, E. Loizeaux, C. Carson, S. Nischal,
    The India Water Tool, 2016, The World Resources Institute and
    Columbia Water Centre, Washington DC, Available online:
    http://www.indiawatertool.in. 
-  M. Ramachandran, Guidance notes for continuous water supply
    (24–7 supply) – A guide to project preparation implementation
    and appraisal: A report by water and sanitation program, 2014,
    http://sanitation.indiawaterportal.org/english/node/2351. 
-  A. Campisano, G. D’Amico, C. Modica, Water saving and cost
    analysis of large-scale implementation of domestic rain water
    harvesting in minor Mediterranean Islands, Water, 9 (2017) 916. 
-  H.E. Mutikanga, S.K. Sharma, K. Vairavamoorthy, Methods and
    tools for managing losses in water distribution systems, J. Water
    Resour. Plann. Manage., 139 (2012) 166174. 
-  E.A. Lee, The past, present and future of cyber-physical systems:
    a focus on models, Sensors, 15 (2015) 4837–4869. 
-  E.A. Lee, S.A. Seshia, Introduction to Embedded Systems:
    A Cyber-Physical Systems Approach, Mit Press, 2016. 
-  J. Lin, A. Miller, S. Sedigh, Integrated Cyber-physical Simulation
    of Intelligent Water Distribution Networks, INTECH Open
    Access Publisher, 2011. 
-  J. Lin, S. Sedigh, A. Miller, A game-theoretic approach to
    decision support for intelligent water distribution, In: 2011
    44th Hawaii International Conference on System Sciences,
    Kauai, HI, USA, 2011, ISSN 1530–1605. 
-  M. Suresh, U. Manohary, A.G. Ry, R. Stoleru, M.K.M. Sy,
    A cyber-physical system for continuous monitoring of
    water distribution systems, In: 2014 IEEE 10th International
    Conference on Wireless and Mobile Computing, Networking
    and Communications (WiMob), Larnaca, Cyprus. 2014, ISSN
    2160–48863. 
-  Z. Wang, H. Song, D.W. Watkins, K.G. Ong, P. Xue, Q. Yang,
    X. Shi, Cyber physical systems for water sustainability:
    challenges and opportunities, IEEE Commun. Mag., 53 (2015)
    216222. 
-  C.-Y. Lin, S. Zeadally, T.-S. Chen, C.-Y. Chang, Enabling cyber
    physical systems with wireless sensor networking technologies,
    Int. J. Distrib. Sens. Netw., 8 (2012a) 489794. 
-  J. Lin, A. Hurson, S. Sedigh, Knowledge Management for Fault-
    Tolerant Water Distribution, in: Large Scale Network-Centric
    Distributed Systems, 2012, pp. 649–677. 
-  J. Lin, S. Sedigh, A.R. Hurson, Ontologies and Decision
    Support for Failure Mitigation in Intelligent Water Distribution
    Networks, In: 2012 45th Hawaii International Conference on
    System Sciences, Maui, HI, USA, 2012b, ISSN 1530–1605. 
-  E.K. Wang, Y. Ye, X. Xu, S.-M. Yiu, L.C.K. Hui, K.-P. Chow,
    Security issues and challenges for cyber physical system, In
    2010 IEEE/ACM Int’l Conference on Green Computing and
    Communications Int’l Conference on Cyber, Physical and Social
    Computing, Hangzhou, China, 2010, ISBN Print ISBN: 978-1-
    4244-9779-9; CD-ROM ISBN: 978-0-7695-4331-4. 
-  K. Patil, A. Ghosh, D. Das, S.K. Vuppala, Iwcmse: Integrated
    water consumption monitoring solution for enterprises, Proc.
    2014 International Conference on Interdisciplinary Advances in
    Applied Computing, ACM, 2014. 
-  Q. Zhang, A. Rahman, C. D’este, Impute vs. ignore: missing
    values for prediction, In: Neural Networks (IJCNN), The 2013
    International Joint Conference on, IEEE, 2013. 
-  H.T. Wubetie, Missing data management and statistical
    measurement of socio-economic status: application of big data,
    J. Big Data, 4 (2017) 47. 
-  I.M. Pires, N.M. Garcia, N. Pombo, F. Florez-Revuelta, From
    data acquisition to data fusion: a comprehensive review and a
    roadmap for the identification of activities of daily living using
    mobile devices, Sensors, 16 (2016) 184. 
-  K. Lakshminarayan, S.A. Harp, T. Samad, Imputation of missing
    data in industrial databases, Appl. Intell., 11 (1999) 259–275. 
-  A. Kowarik, M. Templ, Imputation with r package vim, J. Stat.
    Software, 74 (2016) 1–16. 
-  M. Templ, A. Alfons, A. Kowarik, B. Prantner, Vim: Visualization
    and imputation of missing values, 2011, URL http://CRAN.R-project. org/package= VIM. R package version, 3(0). 
-  B. Prantner, Visualization of imputed values using the
    R-package VIM, 2011. 
-  J. Honaker, G. King, M. Blackwell, M.M. Blackwell, Package
    amelia, 2010. 
-  T. Hastie, R. Mazumder, Softimpute: Matrix Completion via
    Iterative Soft-Thresholded SVD, R package, Version 1, 2015. 
-  U. Pillai, V. Murthy, I. Selesnick, Missing data recovery using
    low rank matrix completion methods, In: Radar Conference
    (RADAR), IEEE, 2012. 
-  Y.-L. Zheng, L.-P. Zhang, X.-L. Zhang, K. Wang, Y.-J. Zheng,
    Forecast model analysis for the morbidity of tuberculosis in
    Xinjiang, China, PLoS One, 10 (2015) e0116832. 
-  M. Herrera, L. Torgo, J. Izquierdo, R. Pérez-García, Predictive
    models for forecasting hourly urban water demand, J. Hydrol.,
    387 (2010) 141–150. 
-  G.-Z. Wu, K. Sakaue, S. Murakawa, Verification of calculation
    method using Monte Carlo Method for water supply demands
    of office building, Water, 9 (2017) 376. 
-  L. Torgo, M.L. Torgo, Package dmwr, Comprehensive R Archive
    Network, 2013. 
-  J. Nookhong, N. Kaewrattanapat, Efficiency comparison of data
    mining techniques for missing-value imputation, J. Ind. Intell.
    Inf., 3 (2015) 305–309. 
-  M.B. Abhishek, N.S.V. Shet, Data transmission unit and web
    server interaction to monitor water distribution: a cyberphysical
    system perspective, Int. J. Adv. Sci. Eng. Inf. Technol., 8
	  (2018) 1307–1312.