1. D. Mantzavinos, E. Psillakis, Enhancement of biodegradability of industrial wastewaters by chemical oxidation pre-treatment, J. Chem. Technol. Biotechnol., 79 (2004) 431–454.
  2. M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis, Chem. Rev., 95 (1995) 69–96.
  3. O. Legrini, E. Oliveros, A.M. Braun, Photochemical processes for water-treatment, Chem. Rev., 93 (1993) 671–698.
  4. U.M. Nascimento, E.B. Azevedo, Microwaves and their coupling to advanced oxidation processes: enhanced performance in pollutants degradation, J. Environ. Sci. Health, A: Toxic/Haz. Subst. Environ. Eng., 48 (2013) 1056–1072.
  5. A.C. Rodrigues, M. Boroski, N.S. Shimada, J.C.G. Garcia, J. Nozaki, Treatment of paper pulp and paper mill wastewater by coagulation-flocculation followed by heterogeneous photocatalysis, J. Photochem. Photobiol., A., 194 (2008) 1–10.
  6. A.L. Linsebigler, G. Lu, J.T. Yates Jr., Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results, Chem. Rev., 95 (1995) 735–758.
  7. L. Ciccotti, L.A.S. Vale, T.L.R. Hewer, R.S. Freire, Fe3O4@TiO2 preparation and catalytic activity in heterogeneous photocatalytic and ozonation processes, Catal. Sci. Technol., 5 (2015) 1143–1152.
  8. K.H. Choi, S.L. Oh, J.H. Jung, J.S. Jung, Efficiently recyclable magnetic core-shell photocatalyst for photocatalytic oxidation of chlorophenol in water, J. Appl. Phys., 111 (2012) 07B504.
  9. S. Xuan, W. Jiang, X. Gong, Y. Hu, Z. Chen, Magnetically separable Fe3O4/TiO2 hollow spheres: fabrication and photocatalytic activity, J. Phys. Chem. C, 113 (2009) 553–558.
  10. S. Kurinobu, K. Tsurusaki, Y. Natui, M. Kimata, M. Hasegawa, Decomposition of pollutants in wastewater using magnetic photocatalyst particles, J. Magn. Magn. Mater., 310 (2007) e1025–e1027.
  11. Z.D. Li, H.L. Wang, X.N. Wei, X.Y. Liu, Y.F. Yang, W.F. Jiang, Preparation and photocatalytic performance of magnetic Fe3O4@TiO2 core-shell microspheres supported by silica aerogels from industrial fly ash, J. Alloys Compd., 659 (2016) 240–247.
  12. Y. Chen, T. Yuan, F. Wang, J. Hu, W. Tu, Magnetically separable Fe3O4@TiO2 nanospheres: preparation and photocatalytic activity, J. Mater. Sci. Mater. Electron., 27 (2016) 9983–9988.
  13. H. Arora, A. Wu, J. Boyle, T. Paunesku, G. Woloschak, Conjugation to Fe3O4@TiO2 nanoparticles increases uptake and nuclear localization of doxorubicin in a drug-resistant ovarian carcinoma model, Int. J. Radiat. Oncol. Biol. Phys., 75 (2009) S564–S565.
  14. Q. He, Z. Zhang, J. Xiong, Y. Xiong, H. Xiao, A novel biomaterial — Fe3O4:TiO2 core-shell nano particle with magnetic performance and high visible light photocatalytic activity, Opt. Mater., 31 (2008) 380–384.
  15. W.J. Chen, P.J. Tsai, Y.C. Chen, Functional Fe3O4/TiO2 core/shell magnetic nanoparticles as photokilling agents for pathogenic bacteria, Small, 4 (2008) 485–491.
  16. X.P. Wu, X. Zhong, Y.Q. Chai, R. Yuan, Electrochemiluminescence acetylcholine biosensor based on biofunctional AMs-AChEChO biocomposite and electrodeposited graphene-Au-chitosan nanocomposite, Electrochim. Acta, 147 (2014) 735–742.
  17. W.F. Ma, Y. Zhang, L.L. Li, L.J. You, P. Zhang, Y.T. Zhang, J.M. Li, M. Yu, J. Guo, H.J. Lu, C.C. Wang, Tailor-made magnetic Fe3O4@TiO2 microspheres with a tunable mesoporous anatase shell for highly selective and effective enrichment of phosphopeptides, ACS Nano, 6 (2012) 3179–3188.
  18. Y. Li, X. Xu, D. Qi, C. Deng, P. Yang, X. Zhang, Novel Fe3O4@TiO2 core-shell microspheres for selective enrichment of phosphopeptides in phosphoproteome analysis, J. Proteome. Res., 7 (2008) 2526–2538.
  19. V. Elhami, A. Karimi, M. Aghbolaghy, Preparation of heterogeneous bio-Fenton catalyst for decolorization of Malachite Green, J. Taiwan. Inst. Chem. Eng., 56 (2015) 154–159.
  20. J. Sánches-martín, J. Beltrán-heredia, M.T. Rodríguez-sánchez, Removal of erioglaucine (Acid Blue 9) with a new coagulant agent from Acacia mearnsii tannin extract, Coloration. Technol., 128 (2012) 15–20.
  21. A.R. Khataee, H. Aleboyeh, A. Aleboyeh, Crystallite phasecontrolled preparation, characterisation and photocatalytic properties of titanium dioxide nanoparticles, J. Exp. Nanosci., 4 (2009) 121–137.
  22. T. Gessner, U. Mayer In: ULLMANN’S Encyclopedia of Industrial Chemistry. 6th ed., Wiley-VCH: New York, 2001. Triarylmethane and diarylmethane dyes, p. 425–471.
  23. B. Shahmoradi, A. Maleki, K. Byrappa, Photocatalytic degradation of Amaranth and Brilliant Blue FCF dyes using in situ modified tungsten doped TiO2 hybrid nanoparticles, Catal. Sci. Technol., 1 (2011) 1216–1233.
  24. A.R. Auxilio, P.C. Andrews, P.C. Junk, L. Spiccia, The adsorption behavior of C.I. Acid Blue 9 onto calcined Mg–Al layered double hydroxides, Dyes. Pigm., 81 (2009) 103–112.
  25. J.P. Groten, W. Butler, V.J. Feron, G. Kozianowski, A.C. Renwick, R. Walker, An analysis of the possibility for health implications of joint actions and interactions between food additives, Regul. Toxicol. Pharmacol., 31 (2000) 77–91.
  26. M. Flury, H. Flühler, Tracer characteristics of Brilliant Blue FCF, Soil. Sci. Soc. Am. J., 59 (1995) 22–27.
  27. R. Jain, S. Sikarwar, Photodestruction and COD removal of toxic dye erioglaucine by TiO2-UV process: influence of operational parameters, Int. J. Phys. Sci., 3 (2008) 299–305.
  28. M.M. Alsolaiman, L. Howard, FD&C blue dye no. 1 and blue nail discoloration: case report, Nutrition, 19 (2003) 395–396.
  29. W.H. Hansen, O.G. Fitzhugh, A.A. Nelson, K.J. Davis, Chronic toxicity of two food colors, Brilliant Blue FCF and Indigotine, Toxicol. Appl. Pharmacol., 8 (1966) 29–36.
  30. M. Ozaki, S. Kratohvil, E. Matijevic, Formation of monodispersed spindle-type hematite particles, J. Colloid. Interface. Sci., 102 (1984) 146–151.
  31. C.M. Flynn Jr., Hydrolysis of inorganic iron (III) salts, Chem. Rev., 84 (1984) 31–41.
  32. L.C. Varanda, M. Jafelicci Jr, P. Tartaj, K.O. Grady, T. Gonzalezcarreño, M.P. Morales, T. Muñoz, C.J. Serna, Structural and magnetic transformation of monodispersed iron oxide particles in a reducing atmosphere, J. Appl. Phys., 92 (2002) 2079–2085.
  33. L.C. Varanda, M. Jafelicci Jr, G.F. Goya, Magnetic properties of spindle-type iron fine particles obtained from hematite, J. Magn. Magn. Mater., 226 (2001) 1933–1935.
  34. P. Gherardi, E. Matijevic, Interactions of precipitated hematite with preformed colloidal titania dispersions, J. Colloid. Interface Sci., 109 (1986) 57–68.
  35. X.W. Lou, L.A. Archer, A general route to nonspherical anatase TiO2 hollow colloids and magnetic multifunctional particles, Adv. Mater., 20 (2008) 1853–1858.
  36. J. Sun, L. Gao, pH effect on titania-phase transformation of precipitates from titanium tetrachloride solutions, J. Am. Ceram. Soc., 85 (2002) 2382–2384.
  37. H.M. Song, J.M. Ko, J.H. Park, Hybrid photoreactive magnet obtained from Fe3O4/TiO2 composite nanoparticles, Chem. Lett., 38 (2009) 612–613.
  38. IUPAC. The IUPAC Gold Book. Created by Nic M, Jirat J, Kosata B. Updates compiled by Jenkins A, Available at: (Accessed in 20 Aug 2014).
  39. E.P. Barrett, L.G. Joyner, P.P. Halenda, The determination of pore volume and area distributions in porous substances, I. computations from nitrogen isotherms, J. Am. Chem. Soc., 73 (1951) 373–380.
  40. B.D. Cullity, C.D. Graham, Introduction to Magnetic Materials, Addison Wesley: London, 2009.
  41. G.F. Goya, T.S. Berquo, F.C. Fonseca, M.P. Morales, Static and dynamic magnetic properties of spherical magnetite nanoparticles, J. Appl. Phys., 94 (2003) 3520–3528.
  42. B. Barros Neto, I.S. Scarminio, R.E. Bruns. Statistical Design: Chemometrics. Amsterdam: Elsevier B.V; 2006.
  43. L. Cromières, V. Moulin, B. Fourest, E. Giffaut, Physicalchemical characterization of the colloidal hematite/water interface: experimentation and modeling, Coll. Surf., A., 202 (2002) 101–115.
  44. M. Baalousha, Aggregation and disaggregation of iron oxide nanoparticles: influence of particle concentration, pH and natural organic matter, Sci., Total. Environ., 407 (2009) 2093–2101.
  45. S. Al-sayari, A.F. Carley, S.H. Taylor, G.J. Hutching, Au/ZnO and Au/Fe2O3 catalysts for CO oxidation at ambient temperature: comments on the effect of synthesis conditions on the preparation of high activity catalysts prepared by coprecipitation, Top. Catal., 44 (2007) 123–128.
  46. Z. Zhong, J. Ho, J. Teo, S. Shen, A. Gedanken, Synthesis of porous α-Fe2O3 nanorods and deposition of very small gold particles in the pores for catalytic oxidation of CO, Chem. Mater., 19 (2007) 4776–4782.
  47. A.H. Lu, E.L. Slabas, F. Schuth, Magnetic nanoparticles: synthesis, protection, functionalization, and application, Angew. Chem. Int. Ed. Engl., 46 (2007) 1222–1244.
  48. J.P. Jolivet, De la solution à l’oxyde: condensation des cations en solution aqueuse. Chimie de surface des oxyde, Inter Éditions/CNRS Éditions, Paris, 1994.
  49. C.L. Zhu, M.L. Zhang, Y.J. Qiao, G. Xiao, F. Zhang, Y.J. Che, Fe3O4/TiO2 core/shell nanotubes: synthesis and magnetic and electromagnetic wave absorption characteristics, J. Phys. Chem. C, 14 (2010) 16229–16235.
  50. H. Lee, E. Lee, D.K. Kim, N.K. Jang, Y.Y. Jeong, S. Jon, Antibiofouling polymer-coated superparamagnetic iron oxide nanoparticles as potential magnetic resonance contrast agents for in vivo cancer imaging, J. Am. Chem. Soc., 128 (2006) 7383–7389.
  51. T. Sugimoto, K. Sakata, A. Muramatsu, Formation mechanism of monodisperse pseudocubic α-Fe2O3 particles from condensed ferric hydroxide gel, J. Colloid. Interface Sci., 159 (1993) 372–382.