1. Pure Earth (Blacksmith Institute), Annual Report 2016. Available at: (Accessed 12 June 2018).
  2. Pure Earth (Blacksmith Institute), Annual Report 2015. Available at: (Accessed 12 June 2018).
  3. N. Espina, Meycauayan, Marilao in World’s ‘Dirty 30’ – report (2007). Available at: (Accessed 07 May 2018).
  4. Pure Earth (Blacksmith Institute), Annual Report 2008. Available at: (Accessed 07 May 2018).
  5. A. Asfaram, M. Ghaedi, G.R. Ghezelbash, Biosorption of Zn2+, Ni2+ and Co2+ from water samples onto Yarrowia lipolytica ISF7 using a response surface methodology and analyzed by inductively coupled plasma optical emission spectrometry (ICP-OES), RSC. Adv., 6 (2016) 23599–23610.
  6. F.R. Peligro, I. Pavlovic, R. Rojas, C. Barriga, Removal of heavy metals from simulated wastewater by in situ formation of layered double oxides, Chem. Eng. J., 306 (2016) 1035–1040.
  7. J.H. Zhao, J. Liu, N. Li, W. Wang, J. Nan, Z.W. Zhao, F.Y. Cui, Highly efficient removal of bivalent heavy metals from aqueous systems by magnetic porous Fe3O4–MnO2: adsorption behavior and process study, Chem. Eng. J., 304 (2017) 737–746.
  8. E.A. Dil, M. Ghaedi, A. Asfaram, S. Hajati, F. Mehrabi, A. Goudarzi, Preparation of nanomaterials for the ultrasoundenhanced removal of Pb2+ ions and malachite green dye: chemometric optimization and modeling, Ultrason. Sonochem., 34 (2017) 677–691.
  9. J.A. Conkling, C.J. Mocella, Chemistry of Pyrotechnics: Basic Principles and Theory, 2nd ed., CRC Press – Taylor & Francis Group, Boca Raton, FL, USA, 2010.
  10. F.N. Azad, M. Ghaedi, K. Dashtian, A. Jamshidi, G. Hassani, M. Montazerozohori, S. Hajati, M. Rajabi, A.A. Bazrafshan, Preparation and characterization of an AC–Fe3O4–Au hybrid for the simultaneous removal of Cd2+, Pb2+, Cr3+ and Ni2+ ions from aqueous solution via complexation with 2-((2,4-dichlorobenzylidene)-amino)-benzenethiol: taguchi optimization, RSC. Adv., 6 (2016) 19780–19791.
  11. M. Hunsom, K. Pruksathorn, S. Damronglerd, H. Vergnes, P. Duverneuil, Electrochemical treatment of heavy metals (Cu2+, Cr6+, Ni2+) from industrial effluent and modeling copper reduction, Water. Res., 39 (2005) 610–616.
  12. J. Gao, F. Liu, P. Ling, J. Lei, L. Li, C. Li, A. Li, High efficient removal of Cu(II) by a chelating resin from strong acidic solutions: complex formation and DFT certification, Chem. Eng. J., 222 (2013) 240–247.
  13. G.K.G.C. Barros, R.P.F. Melo, E.L.B. Neto, Removal of copper ions using sodium hexadecanoate by ionic flocculation, Sep. Purif. Technol., 200 (2018) 294–299.
  14. N. Moscatello, G. Swayambhu, C.H. Jones, J. Xu, N. Dai, B.A. Pfeifer, Continuous removal of copper, magnesium, and nickel from industrial wastewater utilizing the natural product yersiniabactin immobilized within a packed-bed column, Chem. Eng. J., 343 (2018) 173–179.
  15. Asian Development Bank, Reducing Mercury and Heavy Metals Contamination in Meycauayan River (2009). Available at: tion-meycauayan-river (Accessed 15 June 2018).
  16. Pure Earth (Blacksmith Institute), GAHP, Green Cross Switzerland, Top Ten Countries Turning the Corner on Toxic Pollution 2014. Available at: (Accessed 14 June 2018).
  17. D. Cervantes, R. Sapnu, 20 Bulacan gold smelters shut down (2000). Available at: (Accessed 15 June 2018).
  18. Department of Environment and Natural Resources, Water Quality Guidelines and General Effluent Standards of 2016, administrative order 2016–08 (2016). Available at:–08.pdf (Accessed 07 June 2018).
  19. U.S. Environmental Protection Agency, Guidance Manual for Electroplating and Metal Finishing Pretreatment Standards (1984). Available at: 2015–10/documents/electroplating-and-metal_finishing_pretreatment-guidance_feb-1984.pdf (Accessed 23 May 2018).
  20. Z. Zeledón-Toruño, C. Lao-Luque, M. Solé-Sardans, Nickel and copper removal from aqueous solution by an immature coal (leonardite): effect of pH, contact time and water hardness, J. Chem. Technol. Biotechnol., 80 (2005) 649–656.
  21. M.R. Awual, M. Ismael, T. Yaita, S.A. El-Safty, H. Shiwaku, Y. Okamoto, S. Suzuki, Trace copper(II) ions detection and removal from water using novel ligand modified composite adsorbent, Chem. Eng. J., 222 (2013) 67–76.
  22. S. Taimur, M.I. Hassan, T. Yasin, Removal of copper using novel amidoxime based chelating nanohybrid adsorbent, Eur. Polym. J., 95 (2017) 93–104.
  23. S.S. Rikame, A.A. Mungray, A.K. Mungray, Synthesis, characterization and application of phosphorylated fullerene/sulfonated polyvinyl alcohol (PFSP) composite cation exchange membrane for copper removal, Sep. Purif. Technol., 177 (2017) 29–39.
  24. R.N. Ntimbani, G.S. Simate, S. Ndlovu, Removal of copper ions from dilute synthetic solution using staple ion exchange fibres: dynamic studies, J. Environ. Chem. Eng., 4 (2016) 3143–3150.
  25. Y.-H. Chen, F.-A. Li, Kinetic study on removal of copper(II) using goethite and hematite nano-photocatalysts, J. Colloid Interface. Sci., 347 (2010) 277–281.
  26. N. Aman, T. Mishra, J. Hait, R.K. Jana, Simultaneous photoreductive removal of copper(II) and selenium(IV) under visible light over spherical binary oxide photocatalyst, J. Hazard. Mater., 186 (2011) 360–366.
  27. D. Kanakaraju, S. Ravichandar, Y.C. Lim, Combined effects of adsorption and photocatalysis by hybrid TiO2/ZnO-calcium alginate beads for the removal of copper, J. Environ. Sci., 55 (2017) 214–223.
  28. C. Liu, X. Lei, L. Wang, J. Jia, X. Liang, X. Zhao, H. Zhu, Investigation on the removal performances of heavy metal ions with the layer-by-layer assembled forward osmosis membranes, Chem. Eng. J., 327 (2017) 60–70.
  29. X. Zhao, C. Liu, Efficient removal of heavy metal ions based on the optimized dissolution-diffusion-flow forward osmosis process, Chem. Eng. J., 334 (2018) 1128–1134.
  30. G. Issabayeva, M.K. Aroua, N.M. Sulaiman, Electrodeposition of copper and lead on palm shell activated carbon in a flowthrough electrolytic cell, Desalination, 194 (2006) 192–201.
  31. H.-C. Tao, M. Liang, W. Li, L.-J. Zhang, J.-R. Ni, W.-M. Wu, Removal of copper from aqueous solution by electrodeposition in cathode chamber of microbial fuel cell, J. Hazard. Mater., 189 (2011) 186–192.
  32. A. Lambert, P. Drogui, R. Daghrir, F. Zaviska, M. Benzaazoua, Removal of copper in leachate from mining residues using electrochemical technology, J. Environ. Manage., 133 (2014) 78–85.
  33. G.A. Tonini, L.A.M. Ruotolo, Heavy metal removal from simulated wastewater using electrochemical technology: optimization of copper electrodeposition in a membraneless fluidized bed electrode, Clean. Technol. Envir., 19 (2017) 403–415.
  34. D. Pletcher, F.C. Walsh, Industrial Electrochemistry, 2nd ed., Glasglow: Blackie Academic & Professional, 1993.
  35. Caustic soda flakes/Lye/Sodium hydroxide market price (2018). Available at: (Accessed 18 May 2018).
  36. XE Currency Charts: USD to PHP (2018). Available at: links open overlay panel (Accessed 18 May 2018).
  37. J.B. Lagare, Power rates up by P0.97/kWh in March – The Manila Times Online (2018). Available at:–97-kwh-in-march/385044/ (Accessed 18 May 2018).
  38. D.M. Ayres, A.P. Davis, P.M. Gietka, Removing heavy metals from wastewater, University of Maryland, Engineering Research Center Report, (1994). Available at: (Accessed 07 May 2018).
  39. Porex Filtration Group, Heavy metal removal from wastewater by precipitation and microfiltration, Available at: (Accessed 07 May 2018).
  40. M. Sillanpää, M. Shestakova, Electrochemical Water Treatment Methods: Fundamentals, Methods and Full Scale Applications, Butterworth-Heinemann, Elsevier Inc., 2017.
  41. M. Paunovic, M. Schlesinger, Fundamentals of Electrochemical Deposition, 2nd ed., Wiley-Interscience, John Wiley & Sons, Inc., 2006.
  42. C.G. Zoski, Handbook of Electrochemistry, 1st ed,, Elsevier B.V., 2007.
  43. S.S. Zumdahl, S.A. Zumdahl, Chemistry, 9th ed., Brooks Cole, Cengage Learning, 2014.