1. A. Khataee, R.D.C. Soltani, A. Karimi, S.W. Joo, Sonocatalytic degradation of a textile dye over Gd-doped ZnO nanoparticles synthesized through sonochemical process, Ultrason. Sonochem., 23 (2015) 219–230.
  2. R.D.C. Soltani, A. Khataee, M. Mashayekhi, Photocatalytic degradation of a textile dye in aqueous phase over ZnO nanoparticles embedded in biosilica nanobiostructure, Desal. Wat. Treat., 57 (2016) 13494–13504.
  3. R.D.C. Soltani, A. Rezaee, A. Khataee, Combination of carbon black–ZnO/UV process with an electrochemical process equipped with a carbon black–PTFE-coated gas-diffusion cathode for removal of a textile dye, Ind. Eng. Chem. Res., 52 (2013) 14133–14142.
  4. A. Ghalajkhani, M. Haghighi, M. Shabani, Efficient photocatalytic degradation of methylene blue in aqueous solution over flowerlike nanostructured MoS2-FeZnO staggered heterojunction under simulated solar-light irradiation, J. Photochem. Photobiol., A, 359 (2018) 145–156.
  5. N. Ertugay, F.N. Acar, The degradation of Direct Blue 71 by sono, photo and sonophotocatalytic oxidation in the presence of ZnO nanocatalyst, Appl. Surf. Sci., 318 (2014) 121–126.
  6. A. Hassani, R.D.C. Soltani, S. Karaca, A. Khataee, Preparation of montmorillonite–alginate nanobiocomposite for adsorption of a textile dye in aqueous phase: isotherm, kinetic and experimental design approaches, J. Ind. Eng. Chem., 21 (2015) 1197–1207.
  7. N. Ertugay, F.N. Acar, Sonocatalytic degradation of Direct Blue 71 azo dye at the presence zero-valent iron (ZVI), Desal. Wat. Treat., 51 (2013) 7570–7576.
  8. L. Song, C. Chen, S. Zhang, Q. Wei, Sonocatalytic degradation of amaranth catalyzed by La3+ doped TiO2 under ultrasonic irradiation, Ultrason. Sonochem., 18 (2011) 1057–1061.
  9. N. Ghows, M.H. Entezari, Kinetic investigation on sonodegradation of Reactive Black 5 with core–shell nanocrystal, Ultrason. Sonochem., 20 (2013) 386–394.
  10. B. Neppolian, A. Bruno, C.L. Bianchi, M. Ashokkumar, Graphene oxide based Pt–TiO2 photocatalyst: ultrasound assisted synthesis, characterization and catalytic efficiency, Ultrason. Sonochem., 19 (2012) 9–15.
  11. L. Zhu, Z.D. Meng, C.Y. Park, T. Ghosh, W.C. Oh, Characterization and relative sonocatalytic efficiencies of a new MWCNT and CdS modified TiO2 catalysts and their application in the sonocatalytic degradation of rhodamine B, Ultrason. Sonochem., 20 (2013) 478–484.
  12. O. Yayapao, T. Thongtem, A. Phuruangrat, S. Thongtem, Sonochemical synthesis of Dy-doped ZnO nanostructures and their photocatalytic properties, J. Alloys Compd., 576 (2013) 72–79.
  13. S. Farhadi, F. Siadatnasab, Sonocatalytic degradation of organic pollutants by CdS nanoparticles hydrothermally prepared from cadmium (II) diethanoldithiocarbamate, Desal. Wat. Treat., 66 (2017) 299–308.
  14. J. Wang, Y. Guo, B. Liu, X. Jin, L. Liu, R. Xu, Y. Kong, B. Wang, Detection and analysis of reactive oxygen species (ROS) generated by nano-sized TiO2 powder under ultrasonic irradiation and application in sonocatalytic degradation of organic dyes, Ultrason. Sonochem., 18 (2011) 177–183.
  15. A.I. Khan, A. Ragavan, B. Fong, C. Markland, M. O’Brien, T.G. Dunbar, G.R. Williams, D. O’Hare, Recent developments in the use of layered double hydroxides as host materials for the storage and triggered release of functional anions, Ind. Eng. Chem. Res., 48 (2009) 10196–10205.
  16. F. Li, X. Duan, Applications of Layered Double Hydroxides, in: Layered Double Hydroxides, Springer-Verlag Berlin Heidelberg, 2006, pp. 193–223.
  17. J. He, M. Wei, B. Li, Y. Kang, D. Evans, X. Duan, Preparation of Layered Double Hydroxides, X. Duan, D.G. Evans, Eds., Layered Double Hydroxides. Structure and Bonding, Springer, Berlin Heidelberg, 2006, pp. 89–119.
  18. F.L. Theiss, M.J. Sear-Hall, S.J. Palmer, R.L. Frost, Zinc aluminium layered double hydroxides for the removal of iodine and iodide from aqueous solutions, Desal. Wat. Treat., 39 (2012) 166–175.
  19. G. Xie, K. Zhang, H. Fang, B. Guo, R. Wang, H. Yan, L. Fang, J.R. Gong, A photoelectrochemical investigation on the synergetic effect between CdS and reduced graphene oxide for solar‐energy conversion, Chem. Asian J., 8 (2013) 2395–2400.
  20. S.J. Xia, Z.M. Ni, Q. Xu, B.X. Hu, J. Hu, Layered double hydroxides as supports for intercalation and sustained release of antihypertensive drugs, J. Solid State Chem., 181 (2008) 2610–2619.
  21. S.J. Xia, F.X. Liu, Z.M. Ni, J.L. Xue, P.P. Qian, Layered double hydroxides as efficient photocatalysts for visible-light degradation of Rhodamine B, J. Colloid Interface Sci., 405 (2013) 195–200.
  22. J. Wang, Z. Jiang, L. Zhang, P. Kang, Y. Xie, Y. Lv, R. Xu, X. Zhang, Sonocatalytic degradation of some dyestuffs and comparison of catalytic activities of nano-sized TiO2, nano-sized ZnO and composite TiO2/ZnO powders under ultrasonic irradiation, Ultrason. Sonochem., 16 (2009) 225–231.
  23. S.N. Nam, S.K. Han, J.W. Kang, H. Choi, Kinetics and mechanisms of the sonolytic destruction of non-volatile organic compounds: investigation of the sonochemical reaction zone using several OH monitoring techniques, Ultrason. Sonochem., 10 (2003) 139–147.
  24. N. Serpone, R. Terzian, H. Hidaka, E. Pelizzetti, Ultrasonic induced dehalogenation and oxidation of 2-, 3-, and 4-chlorophenol in air-equilibrated aqueous media. Similarities with irradiated semiconductor particulates, J. Phys. Chem., 98 (1994) 2634–2640.
  25. Y.L. Pang, A.Z. Abdullah, Comparative study on the process behavior and reaction kinetics in sonocatalytic degradation of organic dyes by powder and nanotubes TiO2, Ultrason. Sonochem., 19 (2012) 642–651.
  26. A. Khataee, M. Fathinia, T.S. Rad, Kinetic modeling of nalidixic acid degradation by clinoptilolite nanorod-catalyzed ozonation process, RSC Adv., 6 (2016) 44371–44382.
  27. A. Amani-Ghadim, M.S. Dorraji, Modeling of photocatalytic process on synthesized ZnO nanoparticles: kinetic model development and artificial neural networks, Appl. Catal., B, 163 (2015) 539–546.
  28. M.S. Dorraji, A. Amani-Ghadim, M. Rasoulifard, S. Taherkhani, H. Daneshvar, The role of carbon nanotube in zinc stannate photocatalytic performance improvement: experimental and kinetic evidences, Appl. Catal., B, 205 (2017) 559–568.
  29. L. Xu, W. Chu, N. Graham, Sonophotolytic degradation of dimethyl phthalate without catalyst: analysis of the synergistic effect and modeling, Water Res., 47 (2013) 1996–2004.
  30. H. Zhang, X. Wen, Y. Wang, Synthesis and characterization of sulfate and dodecylbenzenesulfonate intercalated zinc–iron layered double hydroxides by one-step coprecipitation route, J. Solid State Chem., 180 (2007) 1636–1647.
  31. A. Patterson, The Scherrer formula for X-ray particle size determination, Phys. Rev., 56 (1939) 978.
  32. K. Parida, L. Mohapatra, Carbonate intercalated Zn/Fe layered double hydroxide: a novel photocatalyst for the enhanced photo degradation of azo dyes, Chem. Eng. J., 179 (2012) 131–139.
  33. T. Ghosh, K. Ullah, V. Nikam, C.Y. Park, Z.D. Meng, W.C. Oh, The characteristic study and sonocatalytic performance of CdSe–graphene as catalyst in the degradation of azo dyes in aqueous solution under dark conditions, Ultrason. Sonochem., 20 (2013) 768–776.
  34. Y.L. Pang, A.Z. Abdullah, S. Bhatia, Review on sonochemical methods in the presence of catalysts and chemical additives for treatment of organic pollutants in wastewater, Desalination, 277 (2011) 1–14.
  35. B. Vahid, A. Khataee, Photoassisted electrochemical recirculation system with boron-doped diamond anode and carbon nanotubes containing cathode for degradation of a model azo dye, Electrochim. Acta, 88 (2013) 614–620.
  36. A. Hassani, A. Khataee, S. Karaca, C. Karaca, P. Gholami, Sonocatalytic degradation of ciprofloxacin using synthesized TiO2 nanoparticles on montmorillonite, Ultrason. Sonochem., 35 (2017) 251–262.
  37. Y.T. Didenko, W.B. McNamara, K.S. Suslick, Hot spot conditions during cavitation in water, J. Am. Chem. Soc., 121 (1999) 5817–5818.
  38. A. Khataee, S. Saadi, M. Safarpour, S.W. Joo, Sonocatalytic performance of Er-doped ZnO for degradation of a textile dye, Ultrason. Sonochem., 27 (2015) 379–388.
  39. B. Ervens, S. Gligorovski, H. Herrmann, Temperaturedependent rate constants for hydroxyl radical reactions with organic compounds in aqueous solutions, Phys. Chem. Chem. Phys., 5 (2003) 1811–1824.
  40. Y. Meng, X. Huang, Y. Wu, X. Wang, Y. Qian, Kinetic study and modeling on photocatalytic degradation of parachlorobenzoate at different light intensities, Environ. Pollut., 117 (2002) 307–313.
  41. A. Khataee, M. Fathinia, S. Aber, Kinetic modeling of liquid phase photocatalysis on supported TiO2 nanoparticles in a rectangular flat-plate photoreactor, Ind. Eng. Chem. Res., 49 (2010) 12358–12364.
  42. R. Vinu, G. Madras, Kinetics of sonophotocatalytic degradation of anionic dyes with nano-TiO2, Environ. Sci. Technol., 43 (2008) 473–479.
  43. C.H. Fischer, E.J. Hart, A. Henglein, Hydrogen/deuterium isotope exchange in the hydrogen deuteride-water system under the influence of ultrasound, J. Phys. Chem., 90 (1986) 3059–3060.
  44. A. Khataee, S. Saadi, B. Vahid, S.W. Joo, B.-K. Min, Sonocatalytic degradation of Acid Blue 92 using sonochemically prepared samarium doped zinc oxide nanostructures, Ultrason. Sonochem., 29 (2016) 27–38.
  45. J. Wang, T. Ma, Z. Zhang, X. Zhang, Y. Jiang, Z. Pan, Preparation of high active nanometer TiO2 sonocatalyst by partial transition crystal in hydrogen peroxide solution under ultrasonic irradiation, Catal. Commun., 8 (2007) 118–122.
  46. T.J. Mason, A. Tiehm, Advances in Sonochemistry: Ultrasound in Environmental Protection, Elsevier, JAI press, UK, 2001.
  47. G. Rothenberger, J. Moser, M. Graetzel, N. Serpone, D.K. Sharma, Charge carrier trapping and recombination dynamics in small semiconductor particles, J. Am. Chem. Soc., 107 (1985) 8054–8059.