References

  1. Y. Bulut, N. Gözübenli, H. Aydın, Equilibrium and kinetics studies for adsorption of direct blue 71 from aqueous solution by wheat shells, J. Hazard. Mater., 144(1–2) (2007) 300–306.
  2. Z. Ai, J. Li, L. Zhang, S. Lee, Rapid decolorization of azo dyes in aqueous solution by an ultrasound-assisted electrocatalytic oxidation process, Ultrason. Sonochem., 17(2) (2010) 370–375.
  3. Z. Berizi, S.Y. Hashemi, M. Hadi, A. Azari, A.H. Mahvi, The study of non-linear kinetics and adsorption isotherm models for Acid Red 18 from aqueous solutions by magnetite nanoparticles and magnetite nanoparticles modified by sodium alginate, Water Sci. Technol., 74(5) (2016) 1235–1242.
  4. M.J. Iqbal, M.N. Ashiq, Adsorption of dyes from aqueous solutions on activated charcoal, J. Hazard. Mater., 139(1) (2007) 57–66.
  5. M.T. Yagub, T.K. Sen, S. Afroze, H.M. Ang, Dye and its removal from aqueous solution by adsorption: a review, Adv. Colloid Interf., 209 (2014) 172–184.
  6. M.O. Omorogie, J.O. Babalola, E.I. Unuabonah, Regeneration strategies for spent solid matrices used in adsorption of organic pollutants from surface water: a critical review, Desal. Water Treat., 57(2) (2016) 518–544.
  7. F.K. Yuen, B. Hameed, Recent developments in the preparation and regeneration of activated carbons by microwaves, Adv. Colloid Interf., 149(1–2) (2009) 19–27.
  8. R. Berenguer, J. Marco-Lozar, C. Quijada, D. Cazorla-Amorós, E. Morallon, Electrochemical regeneration and porosity recovery of phenol-saturated granular activated carbon in an alkaline medium, Carbon, 48(10) (2010) 2734–2745.
  9. M.-W. Jung, K.-H. Ahn, Y. Lee, K.-P. Kim, J.-S. Rhee, J.T. Park, K.-J. Paeng, Adsorption characteristics of phenol and chlorophenols on granular activated carbons (GAC), Microchem. J., 70(2) (2001) 123–131.
  10. N. Brown, E. Roberts, A. Garforth, R. Dryfe, Electrochemical regeneration of a carbon-based adsorbent loaded with crystal violet dye, Electrochim. Acta, 49(20) (2004) 3269–3281.
  11. G. Zhang, S. Wang, Z. Liu, Ultrasonic regeneration of granular activated carbon, Environ. Eng. Sci., 20(1) (2003) 57–64.
  12. S.-R. Ha, S. Vinitnantharat, H. Ozaki, Bioregeneration by mixed microorganisms of granular activated carbon loaded with a mixture of phenols, Biotechnol. Lett., 22(13) (2000) 1093–1096.
  13. P.M. Coss, C.Y. Cha, Microwave regeneration of activated carbon used for removal of solvents from vented air, JAPCA J. Air Waste Manage., 50(4) (2000) 529–535.
  14. A. Bagreev, H. Rahman, T.J. Bandosz, Thermal regeneration of a spent activated carbon previously used as hydrogen sulfide adsorbent, Carbon, 39(9) (2001) 1319–1326.
  15. O. Belyaeva, N. Golubeva, T. Krasnova, A. Yakusheva, Developing a technology for the regeneration of active coal after pyridine adsorption from wastewater, Chem. Sustain. Dev., 17 (2009) 243–247.
  16. R.M. Narbaitz, J. Cen, Electrochemical regeneration of granular activated carbon, Water Res., 28(8) (1994) 1771–1778.
  17. S.-J. Park, S.-D. Yeo, Supercritical extraction of phenols from organically modified smectite, Sep. Sci. Technol., 34(1) (1999) 101–113.
  18. L.C. Toledo, A.C.B. Silva, R. Augusti, R.M. Lago, Application of Fenton’s reagent to regenerate activated carbon saturated with organochloro compounds, Chemosphere, 50(8) (2003) 1049–1054.
  19. J.B. Parsa, F. Jafari, Sono-Fenton regeneration of granular activated carbon saturated with Rhodamine B: Optimization using response surface methodology, Chem. Eng. Commun., 204(9) (2017) 1070–1081.
  20. R. Berenguer, J. Marco-Lozar, C. Quijada, D. Cazorla-Amorós, E. Morallón, Comparison among chemical, thermal, and electrochemical regeneration of phenol-saturated activated carbon, Energ. Fuel, 24(6) (2010) 3366–3372.
  21. L. Wang, N. Balasubramanian, Electrochemical regeneration of granular activated carbon saturated with organic compounds, Chem. Eng. J., 155(3) (2009) 763–768.
  22. Y.-D. Dai, C. Yuan, C. Huang, P.-C. Chiang, Regeneration of spent carbon nanotubes by electrochemical oxidation over RuO2/Ti electrode, Sep. Purif. Technol., 178 (2017) 207–214.
  23. R. Narbaitz, A. Karimi-Jashni, Electrochemical regeneration of granular activated carbons loaded with phenol and natural organic matter, Environ. Technol., 30(1) (2009) 27–36.
  24. N. Brown, E. Roberts, A. Chasiotis, T. Cherdron, N. Sanghrajka, Atrazine removal using adsorption and electrochemical regeneration, Water Res., 38(13) (2004) 3067–3074.
  25. R. Narbaitz, J. Cen, Alternative methods for determining the percentage regeneration of activated carbon, Water Res., 31(10) (1997) 2532–2542.
  26. C.-H. Weng, M.-C. Hsu, Regeneration of granular activated carbon by an electrochemical process, Sep. Purif. Technol., 64(2) (2008) 227–236.
  27. M. Zhou, Q. Dai, L. Lei, C.a. Ma, D. Wang, Long life modified lead dioxide anode for organic wastewater treatment: electrochemical characteristics and degradation mechanism, Environ. Sci. Technol., 39(1) (2005) 363–370.
  28. K. Jardak, A. Dirany, P. Drogui, M.A. El Khakani, Electrochemical degradation of ethylene glycol in antifreeze liquids using boron doped diamond anode, Sep. Purif. Technol., 168 (2016) 215–222.
  29. H. Zhang, L. Ye, H. Zhong, Regeneration of phenol-saturated activated carbon in an electrochemical reactor, J. Chem. Technol. Biot.: Int. Res. Process, Environ. Clean Technol., 77(11) (2002) 1246–1250.
  30. R.M. Narbaitz, J. McEwen, Electrochemical regeneration of field spent GAC from two water treatment plants, Water Res., 46(15) (2012) 4852–4860.
  31. J.B. Parsa, F. Jafari, Electrochemical regeneration of granular activated carbon saturated with Rhodamine B in a fluidized electrochemical reactor, Desal. Water Treat., 94 (2017) 174–180.
  32. M. Zhou, L. Lei, Electrochemical regeneration of activated carbon loaded with p-nitrophenol in a fluidized electrochemical reactor, Electrochim. Acta, 51(21) (2006) 4489–4496.
  33. O. Zanella, D. Bilibio, W.L. Priamo, I.C. Tessaro, L.A. Féris, Electrochemical regeneration of phenol-saturated activated carbon–proposal of a reactor, Environ. Technol., 38(5) (2017) 549–557.
  34. A. Azizi, M.R. Alavi Moghaddam, R. Maknoon, E. Kowsari, Investigation of enhanced Fenton process (EFP) in color and COD removal of wastewater containing Acid Red 18 by response surface methodology: evaluation of EFP as post treatment, Desal. Water Treat., 57(30) (2016) 14083–14092.
  35. L. Wang, Z. Chen, H. Wen, Z. Cai, C. He, Z. Wang, W. Yan, Microwave assisted modification of activated carbons by organic acid ammoniums activation for enhanced adsorption of acid red 18, Powder Technol., 323 (2018) 230–237.
  36. O. De Nora, A. Nidola, P.M. Spaziante, Manganese dioxide electrodes, Google Patents, 1978.
  37. K.P. Singh, S. Gupta, A.K. Singh, S. Sinha, Experimental design and response surface modeling for optimization of Rhodamine B removal from water by magnetic nanocomposite, Chem. Eng. J., 165(1) (2010) 151–160.
  38. J.B. Parsa, M. Abbasi, Modeling and optimizing of sonochemical degradation of Basic Blue 41 via response surface methodology, Cent. Eur. J. Chem., 8(5) (2010) 1069–1077.
  39. B.K. Körbahti, A. Tanyolaç, Electrochemical treatment of simulated textile wastewater with industrial components and Levafix Blue CA reactive dye: Optimization through response surface methodology, J. Hazard. Mater., 151(2–3) (2008) 422– 431.
  40. K.P. Singh, N. Basant, A. Malik, G. Jain, Modeling the performance of “up-flow anaerobic sludge blanket” reactor based wastewater treatment plant using linear and nonlinear approaches—a case study, Anal. Chim. Acta, 658(1) (2010) 1–11.
  41. R. Meng, X. Yu, Investigation of ultrasound assisted regeneration of Ni–bentonite with response surface methodology (RSM), Appl. Clay Sci., 54(1) (2011) 112–117.
  42. B. Hameed, I. Tan, A. Ahmad, Optimization of basic dye removal by oil palm fibre-based activated carbon using response surface methodology, J. Hazard. Mater., 158(2–3) (2008) 324–332.
  43. F.N. Chianeh, J.B. Parsa, Electrochemical degradation of metronidazole from aqueous solutions using stainless steel anode coated with SnO2 nanoparticles: experimental design, J. Taiwan Inst. Chem. Eng., 59 (2016) 424–432.
  44. J.B. Parsa, Z. Merati, M. Abbasi, Modeling and optimizing of electrochemical oxidation of CI Reactive Orange 7 on the Ti/Sb–SnO2 as anode via Response Surface Methodology, J. Indust. Eng. Chem., 19(4) (2013) 1350–1355.
  45. X. Chen, F. Gao, G. Chen, Comparison of Ti/BDD and Ti/SnO2–Sb2O5 electrodes for pollutant oxidation, J. Appl. Electrochem., 35(2) (2005) 185–191.