References

  1. J.R. McCutcheon, R.L. McGinnis, M. Elimelech, A novel ammonia-carbon dioxide forward (direct) osmosis desalination process, Desalination, 174 (2005) 1–11.
  2. R.L. McGinnis, N.T. Hancock, M.S. Nowosielski-Slepowron, G.D. McGurgan, Pilot demonstration of the NH3/CO2 forward osmosis desalination process on high salinity brines, Desalination, 312 (2010) 67–74.
  3. T.Y. Cath, A.E. Childress, M. Elimelech, Forward osmosis: principles, applications, and recent developments, J. Membr. Sci., 281 (2006) 70–78.
  4. Y. Yang, M. Chen, S. Zou, X. Yang, T.E. Long, Z. He, Efficient recovery of polyelectrolyte draw solutes in forward osmosis towards sustainable water treatment, Desalination, 422 (2017) 134–141.
  5. T.S. Chung, S. Zhang, K.Y. Wang, J. Su, M.M. Ling, Forward osmosis processes: yesterday, today and tomorrow, Desalination, 287 (2012) 78–81.
  6. W.A. Philip, J.S. Yong, M. Elimelech, Reverse draw solute permeation in forward osmosis: modeling and experiments, Environ. Sci. Technol., 44 (2010) 5170–5176.
  7. D. Attarde, M. Jain, S.K. Gupta, Modeling of a forward osmosis and a pressure-retarded osmosis spiral wound module using the Spiegler-Kedem model and experimental validation, Sep. Purif. Technol., 164 (2016) 182–197.
  8. D. Attarde, M. Jain, K. Chaudhary, S.K. Gupta, Osmotically driven membrane processes by using a spiral wound module – modeling, experimentation and numerical parameter estimation, Desalination, 361 (2015) 81–94.
  9. J.R. McCutcheon, M. Elimelech, Influence of concentrative and dilutive internal concentration polarization on flux behavior in forward osmosis, J. Membr. Sci., 284 (2006) 237–247.
  10. S. Benavides, W.A. Phillip, Water recovery and solute rejection in forward osmosis modules: modeling and bench-scale experiments, J. Membr. Sci., 505 (2016) 26–35.
  11. S. Mondal, R.W. Field, J.J. Wu, Novel approach for sizing forward osmosis membrane systems, J. Membr. Sci., 541 (2012) 321–328.
  12. Z.L. Cheng, T.S. Chung, Mass transport of various membrane configurations in pressure retarded osmosis (PRO), J. Membr. Sci., 537 (2017) 160–176.
  13. E. Nagy, A general, resistance-in-series, salt- and water flux models for forward osmosis and pressure-retarded osmosis for energy generation, J. Membr. Sci., 460 (2014) 71–81.
  14. N.N. Bui, J.T. Arena, J.R. McCutcheon, Proper accounting of mass transfer resistances in forward osmosis: improving the accuracy of model predictions of structural parameter, J. Membr. Sci., 492 (2015) 289–302.
  15. E. Nagy, I. Hegedüs, E.W. Tow, J.H. Lienhard V, Effect of fouling on performance of pressure retarded osmosis (PRO) and forward osmosis (FO), J. Membr. Sci., 565 (2018) 450–492.
  16. D.H. Jung, J. Lee, D.Y. Kim, Y.G. Lee, M. Park, S. Lee, D.R. Yang, J.H. Kim, Simulation of forward osmosis membrane process: effect of membrane orientation and flow direction of feed and draw solutions, Desalination, 277 (2012) 83–91.
  17. M.R.S. Sousa, J. Lora-Garcia, M.F. López-Pérez, Experimental study and modeling of forward osmosis process for activated sludge concentration by using residual brine from a stuffed olive factory as draw solution, J. Water Process Eng., 21 (2018) 143–153.
  18. D. Xiao, W. Li, S. Chou, R. Wang, C.Y. Tang, A modeling investigation on optimizing the design of forward osmosis hollow fiber modules, J. Membr. Sci., 392–393 (2012) 76–87.
  19. T. Ruprakobkit, L. Ruprakobkit, C. Ratanatamskul, Carboxylic acid concentration by forward osmosis processes: dynamic modeling, experimental validation and simulation, Chem. Eng. J., 306 (2016) 538–549.
  20. Y. Xu, X. Peng, C.Y. Tang, Q.S. Fu, S. Nie, Effect of draw solution concentration and operating conditions on forward osmosis and pressure retarded osmosis performance in a spiral wound module, J. Membr. Sci., 348 (2010) 298–309.
  21. W. Xue, K. Yamamoto, T. Tobino, C. Ratanatamskul, Modeling prediction of the process performance of seawater-driven forward osmosis for nutrients enrichment: Implication for membrane module design and system operation, J. Membr. Sci., 515 (2016) 7–21.
  22. J.G. Wijmans, R.W. Baker, The solution-diffusion model: a review, J. Membr. Sci., 107 (1995) 1–21.
  23. E.M.V. Hoek, A.S. Kim, M. Elimelech, Influence of crossflow membrane filter geometry and shear rate on colloidal fouling in reverse osmosis and nanofiltration separations, Environ. Eng. Sci., 19 (2002) 357–372.
  24. K.L. Lee, R.W. Baker, H.K. Lonsdale, Membranes for power generation by pressure retarded osmosis, J. Membr. Sci., 8 (1981) 141–171.
  25. K.S. Spiegler, O. Kedem, Thermodynamics of hyperfiltration (reverse osmosis): criteria for efficient membranes, Desalination, 1 (1966) 311–326.
  26. S. Senthilmurugan, A. Ahluwalia, S.K. Gupta, Modeling of a spiral-wound module and estimation of model parameters using numerical techniques, Desalination, 173 (2005) 269–286.