1. M.B. Khalid, G.F. Faris, M.A. Isam, Reuse of alum sludge in construction materials and concrete works: a general overview, Infrastruct. Univ. Kuala Lumpur Res. J., 2 (2014) 20–30.
  2. Y.W. Ling, S. Dong, Z. Li, G.L. Feng, A. Ning, H.Y. Wei, H.Z. Chun, Utilization of alum sludge for producing aluminum hydroxide and layered double hydroxide, Ceram. Int., 40 (2014) 15503–15514.
  3. M. Manali, Preparation and Characterization of Alumina- Strontium Aluminate Based Composite, Thesis, National Institute of Technology, Roukela, 2015.
  4. R.C. Ropp, Encyclopedia of the Alkaline Earth Compounds, Elsevier, Amsterdam, 2013.
  5. P. Ptáček, F. Šoukal, T. Opravil, E. Bartoníčková, M. Zmrzlý, R. Novotný, Synthesis, hydration and thermal stability of hydrates in strontium-aluminate cement, Ceram. Int., 40 (2014) 9971–9979.
  6. M. Martynas, J. Jens-Erik, K. Aivaras, Sol-gel synthesis, structural and optical properties of cerium-doped strontium aluminates, Sr3Al2O6 and SrAl12O19, Mater. Sci., 19 (2013) 438–442.
  7. P. Ptáček, Strontium Aluminate - Cement Fundamentals, Manufacturing, Hydration, Setting Behaviour and Applications, 2014, Available at doi: 10.5772/57363, ISBN: 978-953-51-1591-5.
  8. I. Odler, Special Inorganic Cements (Modern Concrete Technology), 1st ed., Taylor & Francis Group, New York, 2000.
  9. N. Illyouka, V. Timofeeva, Development of Hydraulic Zirconia Cements and Their Applications for Productions of Refractories Items, T.t. University (Ed.), Kharkov, Ukraine, 1998.
  10. A. Douy, M. Capron, Crystallisation of spray-dried amorphous precursors in the SrO–Al2O3 system: a DSC study, J. Eur. Ceram. Soc., 23 (2003) 2075–2081.
  11. A.K. Chatterjee, Re-examining the prospects of aluminous cements based on alkali-earth and rare-earth oxides, Cem. Concr. Res., 39 (2009) 981–988.
  12. K. Bum-Joon, H. Zubair, K. Jung-Sik, Synthesis and characterization of long persistence Sr4Al14O25: Eu2+, Dy3+ phosphor prepared by combustion method, Int. J. Ceram. Process. Res., 14 (2013) 601–605.
  13. G.I. Akmehmet, S. Šturm, L. Bocher, M. Kociak, B. Ambrožič, C.W. Ow-Yang, Structure and luminescence in long persistence Eu, Dy, and B codoped strontium aluminate phosphors: the boron effect, J. Am. Ceram. Soc., 99 (2016) 2175–2180.
  14. D. Haranath, S. Virendra, C. Harish, S. Pooja, Tuning of emission colours in strontium aluminate long persisting phosphor, J. Phys. D: Appl. Phys., 36 (2003) 2244–2248.
  15. M. Avdeev, S. Yakovlev, A.A. Yaremchenko, V.V. Kharton, Transitions between P21, P63 and P6322 modifications of SrAl2O4 by in situ high-temperature X-ray and neutron diffraction, J. Solid State Chem., 180 (2007) 3535–3544.
  16. V.P. Singh, A.P. Mohanty, A.S.P. Lochab, R. Chandana, Anomalous luminescent properties in ZnO and SrAl2O4 composites, RSC Adv., 4 (2014) 36765–36770.
  17. C. Yu-Lun, H. Hsing-I, Phase evolution during formation of SrAl2O4 from SrCO3 and α-Al2O3/AlOOH, J. Am. Ceram. Soc., 90 (2007) 2759–2765.
  18. M. Misevicius, O. Scit, I. Grigoraviciute-Puroniene, G. Degutis, I. Bogdanoviciene, A. Kareiva, Sol–gel synthesis and investigation of un-doped and Ce-doped strontium aluminates, Ceram. Int., 38 (2012) 5915–5924.
  19. Z. Xue, S. Deng, Y. Liu, B. Lei, Y. Xiao, M. Zheng, Synthesis and luminescence properties of SrAl2O4: Eu2+, Dy3+ hollow microspheres via a solvothermal co-precipitation method, J. Rare Earths, 31 (2013) 241–246.
  20. H. Song, D. Chen, W. Tang, Y. Peng, Synthesis of SrAl2O4: Eu2+, Dy3+, Gd3+ phosphor by combustion method and its phosphorescence properties, Displays, 29 (2008) 41–44.
  21. N. Setoudeh, N.J. Welham, Ball milling induced reduction of SrSO4 by Al, Int. J. Miner. Process., 98 (2011) 214–218.
  22. Y. Liu, C.N. Xu, Influence of calcining temperature on photoluminescence and triboluminescence of europium-doped strontium aluminate particles prepared by sol–gel process, J. Phys. Chem. B, 107 (2003) 3991–3995.
  23. Z. Fu, S. Zhou, S. Zhang, Study on optical properties of rareearth ions in nanocrystalline monoclinic SrAl2O4: Ln (Ln = Ce3+, Pr3+, Tb3+), J. Phys. Chem. B, 109 (2005) 14396–14400.
  24. Y. Xu, W. Peng, S. Wang, X. Xiang, P. Lu, Synthesis of SrAl2O4 and SrAl12O19 via ethylenediaminetetraacetic acid precursor, Mater. Chem. Phys., 98 (2006) 51–54.
  25. Y.-L. Chang, H.-I. Hsiang, M.-T. Liang, F.-S. Yen, Phase evolution and thermal behaviors of the solid-state reaction between SrCO3 and Al2O3 to form SrAl2O4 under air and CO2-air atmospheres, Ceram. Int., 38 (2012) 2269–2276.
  26. T. Peng, H. Yang, X. Pu, B. Hu, Z. Jiang, C. Yan, Combustion synthesis and photoluminescence of SrAl2O4: Eu, Dy phosphor nanoparticles, Mater. Lett., 58 (2004) 352–356.
  27. T. Aitasalo, P. Deren, J. Holsa, H. Jungner, J.C. Krupa, M. Lastusaari, J. Legendziewicz, J. Niittykoski, W. Strek, Persistent luminescence phenomena in materials doped with rare earth ions, J. Solid State Chem., 171 (2003) 114–122.
  28. J. Hölsä, H. Jungner, M. Lastusaari, J. Niittykoski, Persistent luminescence of Eu2+ doped alkaline earth aluminates, MAl2O4: Eu2+, J. Alloys Compd., 323–324 (2001) 326–330.
  29. R.M. Khattab, H.A. Badr, H.H. Abo-Almaged, H.E.H. Sadek, Recycling of alum sludge for alpha Al2O3 production using different chemical treatments, Desal. Wat. Treat., 113 (2018) 148–159.
  30. C. Harish, D. Haranath, S. Virendra, S. Pooja, Synthesis of nanocrystals of long persisting phosphor by modified combustion technique, J. Cryst. Growth, 271 (2004) 307–312.
  31. C. Yu-Lun, I.H. Hsing, L. Ming-Tsai, Characterizations of Eu, Dy co-doped SrAl2O4 phosphors prepared by the solid-state reaction with B2O3 addition, J. Alloys Compd., 461 (2008) 598–603.
  32. R.S. Garcés, T.J. Torres, V.A. Flores, Synthesis of SrAl2O4 and Sr3Al2O6 at high temperature, starting from mechanically activated SrCO3 and Al2O3 in blends of 3:1 molar ratio, Ceram. Int., 38 (2012) 889–894.
  33. C. Cherng, C. Teng-Ming, Effect of host compositions on the afterglow properties of phosphorescent strontium aluminate phosphors derived from the sol-gel method, J. Mater. Res., 16 (2001) 1293–1300.
  34. C. Chengkang, Y. Zhaoxin, M. Dali, Eu2+ activated long persistent strontium aluminate nano scaled phosphor prepared by precipitation method, J. Alloys Compd., 415 (2006) 220–224.
  35. M. Franco, System SrO-Al2O3, (1964) pp. 118; Fig. 294 in Phase diagram for ceramics, Part 1, E.M. Levine, C.R. Robbins, H.F. McMurdie, eds., The American Ceramic Society; Ohio. & F. Massazza , The system SrO–Al2O3, Chim. Ind. (Milan)., 41 (1959)108–115.
  36. R.M. Khattab, M.M. El-Sayed Seleman, M.F. Zawrah, Assessment of electric arc furnace dust: Powder characterization and its sinterability as ceramic product, Ceram. Int., 43 (2017) 12939–12947.
  37. R.M. Khattab, M.M.S. Wahsh, N.M. Khalil, Ceramic compositions based on nano forsterite/nano magnesium aluminate spinel powders, Mater. Chem. Phys., 166 (2015) 82–86.
  38. R.M. Khattab, M.M.S. Wahsh, N.M. Khalil, F. Gouraud, M. Huger, T. Chotard, Effect of nanospinel additions on the sintering of magnesia-zirconia ceramic composites, ACS Appl. Mater. Interfaces, 6 (2014) 3320–3324.
  39. K. Alessio, L. Hagemann, Behaviour of refractory products under constant and varying cyclic stress, Stahl-Eisen, 11 (1990) 95–110.
  40. G. Routschka, C. Woehrmeyer, F. Gebhardt, Studies on the behaviour of magnesia, spinel and forsterite refractory bricks under simulated service conditions in the middle regions of oil-fired glass furnace regenerators. Part 1. Corrosion tests and hot-mechanical behaviour of the test brickg, Glastech-Ber., 63 (1990) 87–92.
  41. M.M.S. Wahsh, R.M. Khattab, M.F. Zawrah, Sintering and technological properties of alumina/zirconia/nano-TiO2 ceramic composites, Mater. Res. Bull., 48 (2013) 1411–1414.