1. R. Subramanyam, I. Mishra, Biodegradation of catechol (2-hydroxy phenol) bearing wastewater in an UASB reactor, Chemosphere, 69 (2007) 816–824.
  2. F.C. Moreira, R. Boaventura, E. Brillas, V. Vilar, Electrochemical advanced oxidation processes: a review on their application to synthetic and real wastewaters, Appl. Catal., B, 202 (2017) 217–261.
  3. M. Qasemi, M. Afsharnia, A. Zarei, A.A. Najafpoor, S. Salari, M. Shams, Phenol removal from aqueous solution using Citrullus colocynthis waste ash, Data in Brief, 18 (2018) 620–628.
  4. C.A. Damalas, I.G. Eleftherohorinos, Pesticide exposure, safety issues, and risk assessment indicators, Int. J. Environ. Res. Public Health, 8 (2011) 1402–1419.
  5. M. Ghaderpoori, M. Paydar, A. Zarei, H. Alidadi, A.A. Najafpoor, A.H. Gohary, M. Shams, Health risk assessment of fluoride in water distribution network of Mashhad, Iran, Hum. Ecol. Risk Assess., (2018) p. 1–12.
  6. A.A. Aghapour, G. Moussavi, K. Yaghmaeian, Biological degradation of catechol in wastewater using the sequencing continuous-inflow reactor (SCR), J. Environ. Health Sci. Eng., 11 (2013) 1–10.
  7. M. Bajaj, C. Gallert, J. Winter, Biodegradation of high phenol containing synthetic wastewater by an aerobic fixed bed reactor, Bioresour. Technol., 99 (2008) 8376–8381.
  8. G. Moussavi, A.A. Aghapour, K. Yaghmaeian, The degradation and mineralization of catechol using ozonation catalyzed with MgO/GAC composite in a fluidized bed reactor, Chem. Eng. J., 249 (2014) 302–310.
  9. S. Suresh, V.C. Srivastava, I.M. Mishra, Adsorption of catechol, resorcinol, hydroquinone, and their derivatives: a review, Int. J. Energy Environ. Eng., 3 (2012) 1–19.
  10. J. Michałowicz, W. Duda, Phenols sources and toxicity, Pol. J. Environ. Studies, 16 (2007) 347–362.
  11. M. Ahmadi, F. Vahabzade, E. Moffarrah, M. Aliabadi, Application of Advanced Oxidation of Dephenolization of Olive Oil Mill Wastewater Processing by Fenton’s Reagent, Proc. 9th National Congress of Chem, Eng., 2004.
  12. R. Subramanyam, I. Mishra, Treatment of catechol bearing wastewater in an upflow anaerobic sludge blanket (UASB) reactor: sludge characteristics, Bioresour. Technol., 99 (2008) 8917–8925.
  13. A. Kumar, S. Kumar, S. Kumar, Adsorption of resorcinol and catechol on granular activated carbon: equilibrium and kinetics, Carbon, 41 (2003) 3015–3025.
  14. A.A. Aghapour, G. Moussavi, K. Yaghmaeian, Investigating the performance of a novel cyclic rotating-bed biological reactor compared with a sequencing continuous-inflow reactor for biodegradation of catechol in wastewater, Bioresour. Technol., 138 (2013) 369–372.
  15. G. Lofrano, L. Rizzo, M. Grassi, V. Belgiorno, Advanced oxidation of catechol: a comparison among photocatalysis, Fenton and photo-Fenton processes, Desalination, 249 (2009) 878–883.
  16. I. Oller, S. Malato, J. Sánchez-Pérez, Combination of advanced oxidation processes and biological treatments for wastewater decontamination—a review, Sci. Total Environ., 409 (2011) 4141–4166.
  17. M. Lapertot, C. Pulgarin, I. Oller, W. Gernjak, S. Malato, Enhancing biodegradability of priority substances (pesticides) by solar photo-Fenton, Water Res., 40 (2006) 1086–1094.
  18. A. Fadaei, M.H. Dehghani, A. Rahimi, M. Sadeghi, Using sonophotodegradation technology for removal of organophosphorus pesticides in aqueous solution, Asian J. Chem., 25 (2013) 7517.
  19. V. Oskoei, M.H. Dehghani, S. Nazmara, B. Heibati, M. Asif, I. Tyagi, S. Agarwal, Removal of humic acid from aqueous solution using UV/ZnO nano-photocatalysis and adsorption, J. Mol. Liq., 213 (2016) 374–380.
  20. P. Xu, G.M. Zeng, D.L. Huang, C.L. Feng, Z. Wei, G. Xie, Use of iron oxide nanomaterials in wastewater treatment: a review, Sci. Total Environ., 424 (2012) 1–10.
  21. M. Farzadkia, Degradation of metronidazole in aqueous solution by nano-ZnO/UV photocatalytic process, Desal. Wat. Treat., 52 (2014) 4947–4952.
  22. A. Fadaei, Mh. Dehghani, A.H. Mahvi, S. Nasseri, N. Rastkari, M. Shayeghi, Degradation of organophosphorus pesticides in water during UV/H2O2 treatment: role of sulphate and bicarbonate ions, J. Chem., 9 (2012) 2015–2022.
  23. Q. Sun, W. Leng, Z. Li, Y. Xu, Effect of surface Fe2O3 clusters on the photocatalytic activity of TiO2 for phenol degradation in water, J. Hazard. Mater., 229 (2012) 224–232.
  24. M. Sadeghi, Efficacy study on Advanced Oxidation Processes (AOPs) application for pesticides removal from water with emphasis on their cost aspects, J. Shahrekord Univ. Med. Sci., 15 (2013) 80–89.
  25. H. Hildebrand, K. Mackenzie, F. Kopinke, Novel nano-catalysts for wastewater treatment, Global NEST J., 10 (2008) 47–53.
  26. G.M. Titato, F.M. Lanças, Optimization and validation of HPLC-UV-DAD and HPLC-APCI-MS methodologies for the determination of selected PAHs in water samples, J. Chromatogr. Sci., 44 (2006) 35–40.
  27. F. Mojarad, K. Moradi, Brnamvzvny attitudes and trends sunlight hours in Iran, Geogr. Dev., 34 (2014) 153–166.
  28. R. Rezaei Kalantary, Y. Dadban, M. Farzadkia, A. Esrafili, Photocatalytic degradation and mineralization of diazinon in aqueous solution using nano-TiO2 (Degussa, P25): kinetic and statistical analysis, Desal. Wat. Treat., 55 (2015) 555–563.
  29. WEF, APHA, Standard Methods for the Examination of Water and Wastewater, American Public Health Association (APHA), Washington, D.C., USA, 2005.
  30. M. Aslam, I. Ismail, N. Salah, M. Qamar, A. Hameed, Evaluation of sunlight induced structural changes and their effect on the photocatalytic activity of V2O5 for the degradation of phenols, J. Hazard. Mater., 286 (2015) 127–135.
  31. A. Mandal, K. Ojha, K. Deasim, S. Bhattacharjee, Removal of catechol from aqueous solution by advanced photo-oxidation process, Chem. Eng. J., 102 (2004) 203–208.
  32. M. Chen, X. Li, X. Ma, Selective determination of catechol in wastewater at silver doped polyglycine modified film electrode, Int. J. Electrochem. Sci., 7 (2012) 2616.
  33. A. Gogoi, M. Navgir, K. Sarma, P. Gogoi, Fe3O4-CeO2 metal oxide nanocomposite as a Fenton-like heterogeneous catalyst for degradation of catechol, Chem. Eng. J., 311 (2016) 153–162.
  34. Y. Li, Y. Wang, A. Irini, Effect of pH and H2O2 dosage on catechol oxidation in nano-Fe3O4 catalyzing UV–Fenton and identification of reactive oxygen species, Chem. Eng. J., 244 (2014) 1–8.
  35. P.K. Boruah, B. Sharma, I. Karbhal, M. Shelke, M. Das, Ammonia-modified graphene sheets decorated with magnetic Fe3O4 nanoparticles for the photocatalytic and photo-Fenton degradation of phenolic compounds under sunlight irradiation, J. Hazard. Mater., 325 (2016) 90–100.
  36. Z.C. Kadirova, K. Katsumata, T. Isobe, N. Matsushita, A. Nakajima, Adsorption and photodegradation of methylene blue with Fe2O3-activated carbons under UV illumination in oxalate solution, J. Environ. Chem. Eng., 2 (2014) 2026–2036.
  37. N. Masomboon, C. Ratanatamskul, M.-C. Lu, Chemical oxidation of 2,6-dimethylaniline by electrochemically generated Fenton’s reagent, J. Hazard. Mater., 176 (2010) 92–98.
  38. J. Araña, J.M. Rodriguez, G. Diaz, J.A. Melian, P. Pena, The effect of acetic acid on the photocatalytic degradation of catechol and resorcinol, Appl. Catal., A, 299 (2006) 274–284.
  39. S. Kunduz, G.S.P. Soylu, Highly active BiVO4 nanoparticles: the enhanced photocatalytic properties under natural sunlight for removal of phenol from wastewater, Sep. Purif. Technol., 141 (2015) 221–228.