References

  1. F.Z. Li, M. Zhang, X. Zhao, T. Hou, L.J. Liu, Removal of Co2+ and Sr2+ from a primary coolant by continuous electrodeionization packed with weak base anion exchange resin, Nucl. Technol., 172 (2017) 71–76.
  2. P.C. Gu, S. Zhang, X. Li, X.X. Wang, T. Wen, R. Jehan, A. Alsaedi, T. Hayat, X.K. Wang, Recent advances in layered double hydroxide-based nanomaterials for the removal of radionuclides from aqueous solution, Environ. Pollut., 240 (2018) 493–505.
  3. J. Li, X.X. Wang, G.X. Zhao, C.L. Chen, Z.F. Chai, A. Alsaedi, T. Hayat, X. Wang, Metal-organic framework-based materials: superior adsorbents for the capture of toxic and radioactive metal ions, Chem. Soc. Rev., 47 (2018) 2322–2356.
  4. G.X. Zhao, X.B. Huang, Z.W. Tang, Q.F. Huang, F.L. Niu, X.K. Wang, Polymer-based nanocomposites for heavy metal ions removal from aqueous solution: a review, Polym. Chem., 9 (2018) 3562–3582.
  5. Q. Yang, L. Hou, Y.J. Wang, Progress in study of the low and medium level radioactive liquid waste treatment, Environ. Sci. Manage., 32 (2007) 103–117.
  6. E. Dejean, E. Laktionov, J. Sandeaux, R. Sandeaux, G. Pourcelly, C. Gavach, Electrodeionization with ion-exchange textile for the production of high resistivity water: Influence of the nature of the textile, Desalination, 114 (1997) 165–173.
  7. N. Ghaffour, T.M. Missimer, G.L. Amy, Technical review and evaluation of the economics of water desalination: current and future challenges for better water supply sustainability, Desalination, 309 (2013) 197–207.
  8. T. Itakura, R. SaSai, H. Itoh, Precipitation recovery of boron from wastewater by hydrothermal mineralization, Water. Res., 39 (2005) 2543–2548.
  9. A. Grabowski, G. Zhang, H. Strathmann, G. Eigenberger, The production of high purity water by continuous electrodeionization with bipolar membranes: influence of the anion-exchange membrane permselectivity, J. Membr. Sci., 281 (2006) 297–306.
  10. Ö. Arar, Ü. Yüksel, N. Kabay, M. Yüksel, Application of electrodeionization (EDI) for removal of boron and silica from reverse osmosis (RO) permeate of geothermal water, Desalination, 310 (2013) 25–33.
  11. K.H. Yeon, J.H. Song, S.H. Moon, A study on stack configuration of continuous electrodeionization for removal of heavy metal ions from the primary coolant of a nuclear power plant, Water. Res., 38 (2004) 1911–1921.
  12. M. Tagliabue, A.P. Reverberi, R. Bagatin, Boron removal from water: needs, challenges and perspectives, J. Clean. Prod., 77 (2014) 56–64.
  13. Ö. Arar, Ü. Yüksel, N. Kabay, M. Yüksel, Various applications of electrodeionization (EDI) method for water treatment - A short review, Desalination, 342 (2014) 16–22.
  14. B. Jiang, X. Zhang, X. Zhao, Removal of high level boron in aqueous solutions using continuous electrodeionization (CEDI), Sep. Purif. Technol., 192 (2018) 297–301.
  15. Y.S. Dzyazko, V.N. Belyakov, Purification of a diluted nickel solution containing nickel by a process combining ion exchange and electrodialysis, Desalination, 162 (2004) 179–189.
  16. H.X. Lu, Y.Z. Wang, J.Y. Wang, Removal and recovery of Ni2+ from electroplating rinse water using electrodeionization reversal, Desalination, 348 (2014) 74–81.
  17. Y.Q. Xing, X.M. Chen, P.D. Yao, D.H. Wang, Continuous electrodeionization for removal and recovery of Cr(VI) from wastewater, Sep. Purif. Technol., 67 (2009) 123–126.
  18. Ö. Arar, Ü. Yüksel, N. Kabay, Removal of Cu2+ ions by a microflow electrodeionization (EDI) system, Desalination, 277 (2011) 296–300.
  19. J.H. Song, K.H. Yeon, S.H. Moon, Transport characteristics of Co2+ through an ion exchange textile in a continuous electrodeionization (CEDI) system under electro-regeneration, Sep. Sci. Technol., 39 (2004) 3601–3619.
  20. Y.P. Zhang, L. Wang, S.S. Xuan, Variable effects on electrodeionization for removal of Cs+ ions from simulated wastewater, Desalination, 344 (2014) 212–218.
  21. R.V. Pérez, J.I. Mengual, Current-voltage curves for an electrodialysis reversal pilot plant: determination of limiting currents, Desalination, 141 (2001) 23–37.
  22. J.H. Song, K.H. Yeon, S.H. Moon, Effect of current density on ionic transport and water dissociation phenomena in a continuous electrodeionization (CEDI), J. Membr. Sci., 291 (2007) 165–171.
  23. R.Q. Fu, T.W. Xu, W.H. Yang, Z.X. Pan, A new derivation and numerical analysis of current-voltage characteristics for an ion-exchange membrane under limiting current density, Desalination, 173 (2005) 143–155.
  24. L. Fu, J.Y. Wang, Y.L. Su, Removal of low concentrations of hardness ions from aqueous solutions using electrodeionization process, Sep. Purif. Technol., 68 (2009) 390–396.
  25. A. Doyen, C. Roblet, A.L. Gaudet, L. Bazinet, Mathematical sigmoid-model approach for the determination of limiting and over-limiting current density values, J. Membr. Sci., 452 (2014) 453–459.
  26. L.J. Liu, F.Z. Li, X. Zhao, Low-level radioactive wastewater treatment by continuous electrodeionization, J. Tsinghua. Univ. (Sci & Tech)., 48 (2008).1012–1014.
  27. S.A. Khan, Sorption of the long-lived radionuclides cesium-134, strontium-85 and cobalt-60 on bentonite, J. Radioanal. Nucl Chem., 258 (2003) 3–6.
  28. M.R. Awual, S. Suzuki, T. Taguchi, H. Shiwaku, Y. Okamoto, T. Yaita, Radioactive cesium removal from nuclear wastewater by novel inorganic and conjugate adsorbents, Chem. Eng. J., 242 (2014) 127–135.
  29. E. Korngold, N. Belayev, L. Aronov, Removal of chromates from drinking water by anion exchangers, Sep. Purif. Technol., 33 (2003) 179–187.
  30. X. Qu, M. Tian, B.Q. Liao, A.C. Chen, Enhanced electrochemical treatment of phenolic pollutants by an effective adsorption and release process, Electrochim. Acta, 55 (2010) 5367–5374.
  31. S. Chowdhury, P. Saha, Adsorption kinetic modeling of safranin onto rice husk biomatrix using pseudo-first-order and pseudosecond- order kinetic models: comparison of Linear and Nonlinear methods, CLEAN-Soil. Air. Water., 39 (2011) 274–282.
  32. L. Dohyeon, L.J. Young, K. Yekyung, Investigation of the performance determinants in the treatment of arseniccontaminated water by continuous electrodeionization, Sep. Purif. Technol., 179 (2017) 381–392.