1. T. Kavitha, S. Haider, T. Kamal, M. Ul-Islam, Thermal decomposition of metal complex precursor as route to the synthesis of Co3O4 nanoparticles: Antibacterial activity and mechanism, J. Alloys Compd., 704 (2017) 296–302.
  2. T. Kamal, I. Ahmad, S.B. Khan, A.M. Asiri, Synthesis and catalytic properties of silver nanoparticles supported on porous cellulose acetate sheets and wet-spun fibers, Carbohydr. Polym., 157 (2017) 294–302.
  3. T. Kamal, S.B. Khan, A.M. Asiri, Nickel nanoparticles-chitosan composite coated cellulose filter paper: An efficient and easily recoverable dip-catalyst for pollutants degradation, Environ. Pollut., 218 (2016) 625–633.
  4. F. Ali, S.B. Khan, T. Kamal, K.A. Alamry, A.M. Asiri, Chitosantitanium oxide fibers supported zero-valent nanoparticles: highly efficient and easily retrievable catalyst for the removal of organic pollutants, Sci. Rep., 8 (2018) 6260.
  5. F. Ali, S.B. Khan, T. Kamal, K.A. Alamry, A.M. Asiri, T.R.A. Sobahi, Chitosan coated cotton cloth supported zero-valent nanoparticles: Simple but economically viable, efficient and easily retrievable catalysts, Sci. Rep., 7 (2017) 16957.
  6. F. Ali, S.B. Khan, T. Kamal, Y. Anwar, K.A. Alamry, A.M. Asiri, Bactericidal and catalytic performance of green nanocomposite based on chitosan/carbon black fiber supported monometallic and bimetallic nanoparticles, Chemosphere, 188 (2017) 588–598.
  7. T. Kamal, N. Ali, A.A. Naseem, S.B. Khan, A.M. Asiri, Polymer nanocomposite membranes for antifouling nanofiltration, Recent Pat. Nanotechnol., 10 (2016) 189–201.
  8. S.A. Khan, S.B. Khan, T. Kamal, A.M. Asiri, K. Akhtar, Recent development of chitosan nanocomposites for environmental applications, Recent Pat. Nanotechnol., 10 (2016) 181–188.
  9. M. Ul-Islam, M.W. Ullah, S. Khan, T. Kamal, S. Ul-Islam, N. Shah, J.K. Park, Recent advancement in Cellulose based nanocomposite for addressing environmental challenges, Recent Pat. Nanotechnol., 10 (2016) 169–180.
  10. M.S. Ahmed, T. Kamal, S.A. Khan, Y. Anwar, M.T. Saeed, A.M. Asiri, S.B. Khan, Assessment of anti-bacterial Ni-Al/chitosan composite spheres for adsorption assisted photo-degradation of organic pollutants, Curr. Nanosci., 12 (2016) 569–575.
  11. T. Kamal, S.B. Khan, S. Haider, Y.G. Alghamdi, A.M. Asiri, Thin layer chitosan-coated cellulose filter paper as substrate for immobilization of catalytic cobalt nanoparticles, Int. J. Biol. Macromol., 104 (2017) 56–62.
  12. I. Ahmad, S.B. Khan, T. Kamal, A.M. Asiri, Visible light activated degradation of organic pollutants using zinc-iron selenide, J. Mol. Liq., 229 (2017) 429–435.
  13. T. Kamal, Y. Anwar, S.B. Khan, M.T.S. Chani, A.M. Asiri, Dye adsorption and bactericidal properties of TiO2/chitosan coating layer, Carbohydr. Polym., 148 (2016) 153–160.
  14. T. Kamal, M. Ul-Islam, S.B. Khan, A.M. Asiri, Adsorption and photocatalyst assisted dye removal and bactericidal performance of ZnO/chitosan coating layer, Int. J. Biol. Macromol., 81 (2015) 584–590.
  15. S. Haider, T. Kamal, S.B. Khan, M. Omer, A. Haider, F.U. Khan, A.M. Asiri, Natural polymers supported copper nanoparticles for pollutants degradation, Appl. Surf. Sci., 387 (2016) 1154–1161.
  16. C.-W. Tang, T.-C. Liu, R.-C. Wu, Y.-Y. Shu, C.-B. Wang, Efficient microwave enhanced degradation of 4-nitrophenol in water over coupled nickel oxide and solid acid catalysts, Sustain. Chem. Pharm., 8 (2018) 10–15.
  17. M. Seo, S.Y. Kim, Y.D. Kim, E.D. Park, S. Uhm, Highly stable barium zirconate supported nickel oxide catalyst for dry reforming of methane: from powders toward shaped catalysts, Int. J. Hydrog. Energy, 43 (2018) 11355–11362.
  18. P. Suresh, J.J. Vijaya, T. Balasubramaniam, L.J. Kennedy, Synergy effect in the photocatalytic degradation of textile dyeing waste water by using microwave combustion synthesized nickel oxide supported activated carbon, Desal. Wat. Treat., 57 (2016) 3766–3781.
  19. F. Rostamkhani, H. Karami, A. Ghasemi, Application of nickel oxide nanoparticles as reusable sorbent for the removal of lead ions from contaminated water, Desal. Wat. Treat., 60 (2017) 319–328.
  20. A. Haider, S. Haider, I.-K. Kang, A. Kumar, M.R. Kummara, T. Kamal, S.S. Han, A novel use of cellulose based filter paper containing silver nanoparticles for its potential application as wound dressing agent, Int. J. Biol. Macromol., 108 (2018) 455–461.
  21. F. Ali, S.B. Khan, T. Kamal, Y. Anwar, K.A. Alamry, A.M. Asiri, Anti-bacterial chitosan/zinc phthalocyanine fibers supported metallic and bimetallic nanoparticles for the removal of organic pollutants, Carbohydr. Polym., 173 (2017) 676–689.
  22. S.B. Khan, F. Ali, T. Kamal, Y. Anwar, A.M. Asiri, J. Seo, CuO embedded chitosan spheres as antibacterial adsorbent for dyes, Int. J. Biol. Macromol., 88 (2016) 113–119.
  23. S.B. Khan, S.A. Khan, H.M. Marwani, E.M. Bakhsh, Y. Anwar, T. Kamal, A.M. Asiri, K. Akhtar, Anti-bacterial PEScellulose composite spheres: dual character toward extraction and catalytic reduction of nitrophenol, RSC Adv., 6 (2016) 110077–110090.
  24. N. Ali, Awais, T. Kamal, M. Ul-Islam, A. Khan, S.J. Shah, A. Zada, Chitosan-coated cotton cloth supported copper nanoparticles for toxic dye reduction, Int. J. Biol. Macromol., 111 (2018) 832–838.
  25. W. Witte, International dissemination of antibiotic resistant strains of bacterial pathogens, Infect. Genet. Evol., 4 (2004) 187–191.
  26. H.S. Nagendra Prasad, C.S. Karthik, H.M. Manukumar, L. Mallesha, P. Mallu, New approach to address antibiotic resistance: miss loading of functional membrane microdomains (FMM) of methicillin-resistant Staphylococcus aureus (MRSA), Microb. Pathog., 127 (2019) 106–115.
  27. M.J. Hajipour, K.M. Fromm, A. Akbar Ashkarran, D. Jimenez de Aberasturi, I.R. de Larramendi, T. Rojo, V. Serpooshan, W.J. Parak, M. Mahmoudi, Antibacterial properties of nanoparticles, Trends Biotechnol., 30 (2012) 499–511.
  28. S.A. Khan, S.B. Khan, T. Kamal, M. Yasir, A.M. Asiri, Antibacterial nanocomposites based on chitosan/Co-MCM as a selective and efficient adsorbent for organic dyes, Int. J. Biol. Macromol., 91 (2016) 744–751.
  29. A. Besinis, T.D. Peralta, R.D. Handy, The antibacterial effects of silver, titanium dioxide and silica dioxide nanoparticles compared to the dental disinfectant chlorhexidine on Streptococcus mutans using a suite of bioassays, Nanotoxicology, 8 (2014) 1–16.
  30. S. Liu, H. Yuan, H. Bai, P. Zhang, F. Lv, L. Liu, Z. Dai, J. Bao, S. Wang, Electrochemiluminescence for electric-driven antibacterial therapeutics, J. Am. Chem. Soc., 140 (2018) 2284–2291.
  31. S.M. Dizaj, F. Lotfipour, M. Barzegar-Jalali, M.H. Zarrintan, K. Adibkia, Antimicrobial activity of the metals and metal oxide nanoparticles, Mater. Sci. Eng. C., 44 (2014) 278–284.
  32. P.K. Stoimenov, R.L. Klinger, G.L. Marchin, K.J. Klabunde, Metal oxide nanoparticles as bactericidal agents, Langmuir, 18 (2002) 6679–6686.
  33. T.J. Baker, C.R. Tyler, T.S. Galloway, Impacts of metal and metal oxide nanoparticles on marine organisms, Environ. Pollut., 186 (2014) 257–271.
  34. Y. Zhao, H. Wang, S. Zhuang, G. Wu, J. Leng, W. Li, F. Gao, B. Zhang, G. Du, Near infrared electroluminescence from n-InN/p-NiO/GaN light-emitting diode fabricated by PAMBE, Opt. Commun., 371 (2016) 128–131.
  35. W.-T. Wu, C.-M. Hsu, W.-M. Lin, D.-H. Tsai, U.-J. Peng, Optical and electrical effects of nickel oxide interlayer for anoderecessed organic light-emitting diodes, Org. Electron., 30 (2016) 219–224.
  36. Y. Ding, D. Mu, B. Wu, R. Wang, Z. Zhao, F. Wu, Recent progresses on nickel-rich layered oxide positive electrode materials used in lithium-ion batteries for electric vehicles, Appl. Energy, 195 (2017) 586–599.
  37. T. Kamal, High performance NiO decorated graphene as a potential H2 gas sensor, J. Alloys Compd., 729 (2017) 1058–1063.
  38. J.-W. Lang, L.-B. Kong, W.-J. Wu, Y.-C. Luo, L. Kang, Facile approach to prepare loose-packed NiO nano-flakes materials for supercapacitors, Chem. Commun., 0(2008) 4213–4215.
  39. N.N.M. Zorkipli, N.H.M. Kaus, A.A. Mohamad, Synthesis of NiO nanoparticles through sol-gel method, Procedia Chem., 19 (2016) 626–631.
  40. D.-B. Kuang, B.-X. Lei, Y.-P. Pan, X.-Y. Yu, C.-Y. Su, Fabrication of novel hierarchical β-Ni(OH)2 and NiO microspheres via an easy hydrothermal process, J. Phys. Chem. C., 113 (2009) 5508–5513.
  41. F.-N. Shi, J. Jiang, H. Xiao, X. Li, An extra-long-life supercapacitor based on NiO/C&S composite by decomposition of Ni-based coordination complex, Mater. Des., 153 (2018) 203–210.
  42. M. Golmohammadi, J. Towfighi, M. Hosseinpour, S.J. Ahmadi, An investigation into the formation and conversion of metal complexes to metal oxide nanoparticles in supercritical water, J. Supercrit. Fluids, 107 (2016) 699–706.
  43. Y.-T. Foo, J.E.-M. Chan, G.-C. Ngoh, A.Z. Abdullah, B.A. Horri, B. Salamatinia, Synthesis and characterization of NiO and Ni nanoparticles using nanocrystalline cellulose (NCC) as a template, Ceram. Int. 43 (2017) 16331–16339.
  44. T. Kamal, I. Ahmad, S.B. Khan, A.M. Asiri, Agar hydrogel supported metal nanoparticles catalyst for pollutants degradation in water, Desal. Wat. Treat. 136 (2018) 190–298.
  45. I. Ahmad, T. Kamal, S.B. Khan, A.M. Asiri, An efficient and easily retrievable dip catalyst based on silver nanoparticles/chitosan-coated cellulose filter paper, Cellulose, 23 (2016) 3577–3588.
  46. P. Kganyago, L.M. Mahlaule-Glory, M.M. Mathipa, B. Ntsendwana, N. Mketo, Z. Mbita, N.C. Hintsho-Mbita, Synthesis of NiO nanoparticles via a green route using Monsonia burkeana: the physical and biological properties, J. Photochem. Photobiol. B., 182 (2018) 18–26.
  47. T. Kamal, S.B. Khan, A.M. Asiri, Synthesis of zero-valent Cu nanoparticles in the chitosan coating layer on cellulose microfibers: evaluation of azo dyes catalytic reduction, Cellulose, 23 (2016) 1911–1923.
  48. F.U. Khan, Asimullah, S.B. Khan, T. Kamal, A.M. Asiri, I.U. Khan, K. Akhtar, Novel combination of zero-valent Cu and Ag nanoparticles @ cellulose acetate nanocomposite for the reduction of 4-nitro phenol, Int. J. Biol. Macromol., 102 (2017) 868–877.
  49. T. Kavitha, H. Yuvaraj, A facile approach to the synthesis of high-quality NiO nanorods: electrochemical and antibacterial properties, J. Mater. Chem., 21 (2011) 15686–15691.
  50. N. Wang, C. Hsu, L. Zhu, S. Tseng, J.-P. Hsu, Influence of metal oxide nanoparticles concentration on their zeta potential, J. Colloid Interface Sci., 407 (2013) 22–28.
  51. B.S. Inbaraj, T.-Y. Tsai, B.-H. Chen, Synthesis, characterization and antibacterial activity of superparamagnetic nanoparticles modified with glycol chitosan, Sci. Technol. Adv. Mater., 13 (2012) 015002.
  52. W. Jiang, H. Mashayekhi, B. Xing, Bacterial toxicity comparison between nano- and micro-scaled oxide particles, Environ. Pollut., 157 (2009) 1619–1625.
  53. M. Ul-Islam, A. Shehzad, S. Khan, W.A. Khattak, M.W. Ullah, J.K. Park, Antimicrobial and biocompatible properties of nanomaterials, J. Nanosci. Nanotechnol., 14 (2014) 780–791.
  54. S. Khan, M. Ul-Islam, W.A. Khattak, M.W. Ullah, J.K. Park, Bacterial cellulose-titanium dioxide nanocomposites: nanostructural characteristics, antibacterial mechanism, and biocompatibility, Cellulose, 22 (2015) 565–579.
  55. C. Umamaheswari, A. Lakshmanan, N.S. Nagarajan, Green synthesis, characterization and catalytic degradation studies of gold nanoparticles against congo red and methyl orange, J. Photochem. Photobiol. B., 178 (2018) 33–39.
  56. N. Gupta, H.P. Singh, R.K. Sharma, Metal nanoparticles with high catalytic activity in degradation of methyl orange: an electron relay effect, J. Mol. Catal. Chem., 335 (2011) 248–252.
  57. M. Hakamada, F. Hirashima, M. Mabuchi, Catalytic decoloration of methyl orange solution by nanoporous metals, Catal. Sci. Technol., 2 (2012) 1814–1817.
  58. K. Naseem, Z.H. Farooqi, R. Begum, A. Irfan, Removal of Congo red dye from aqueous medium by its catalytic reduction using sodium borohydride in the presence of various inorganic nanocatalysts: a review, J. Clean. Prod., 187 (2018) 296–307.
  59. T.R. Mandlimath, B. Gopal, Catalytic activity of first row transition metal oxides in the conversion of p-nitrophenol to p-aminophenol, J. Mol. Catal. Chem., 350 (2011) 9–15.
  60. O.A. Zelekew, D.-H. Kuo, Synthesis of a hierarchical structured NiO/NiS composite catalyst for reduction of 4-nitrophenol and organic dyes, RSC Adv., 7 (2017) 4353–4362.